Hadoop is an open source software from Apache, supporting distributed processing and data storage. Hadoop is popular for its scalability, reliability, and functionality available across commoditized hardware.
N/A
Apache Hive
Score 8.1 out of 10
N/A
Apache Hive is database/data warehouse software that supports data querying and analysis of large datasets stored in the Hadoop distributed file system (HDFS) and other compatible systems, and is distributed under an open source license.
Apache Hive is a query language developed by Facebook to query over a large distributed dataset. Apache is a query engine that runs on top of HDFS, so it utilizes the resources of HDFS Hadoop setup, while Apache Spark is an in memory compute engine, and that's why [it is] much …
Apache Hadoop is built on top of the Hadoop File system so it gives its best when integrated with Hadoop. Data analysis and query optimization become very easy when used with Hadoop to perform Extract transform load operations. As Hadoop is a big data system and handles large …
To query a huge, distributed dataset, Apache Hive was built by Facebook. Unlike Apache Hive, Apache Spark is an in-memory computation engine, which is why it is significantly quicker than Apache Hive at querying large amounts of data. In contrast to Apache HBase, Apache Hive is …
Verified User
Engineer
Chose Apache Hive
Hive and Spark have the same parent company hence they share a lot of common features. Hive follows SQL syntax while Spark has support for RDD, DataFrame API. DataFrame API supports both SQL syntax and has custom functions to perform the same functionality. Spark is faster and …
Easy to understand, well supported by the community, good documentation. However, it is possible that SAP Business Warehouse could be a good fit, too, even maybe better. I did not have the chance to try it though. We selected Apache Hive because it was far less expensive and …
For storing bulk amount of data in a tabular manner, and where there's no need need of primary key, or just in case, if redundant data is received, it will not cause a problem. For small amounts of data, it does run MR, so beware. If your intention is to use it as a …
Apache Pig is probably the most direct technology to compare to Hive and has several different use cases to Hive. If you want to simplify processing tasks that run using MapReduce then Apache Pig may be a better tool for the job. However if you are going to be running many …
We selected Hive because it supports SQL, schema and provides structure on top of hadoop. Having data structured has its benefits, especially if there are thousands of users processing on the same data over and over again. Pig provides the ability to process unstructured data. …
Presto is slightly less reliable but much faster for interactive querying. These tools would not be replacements for each other, but rather complements.
Apache Hive was one of the first ways to query data out of a Hadoop cluster using SQL. However, there are many other tools out there that I believe will make Apache Hive a thing of the past. I have been working with in-memory data warehouses and other technologies that do not …