Apache Hadoop vs. Apache Hive

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Hadoop
Score 6.8 out of 10
N/A
Hadoop is an open source software from Apache, supporting distributed processing and data storage. Hadoop is popular for its scalability, reliability, and functionality available across commoditized hardware.N/A
Apache Hive
Score 8.1 out of 10
N/A
Apache Hive is database/data warehouse software that supports data querying and analysis of large datasets stored in the Hadoop distributed file system (HDFS) and other compatible systems, and is distributed under an open source license.N/A
Pricing
Apache HadoopApache Hive
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
HadoopApache Hive
Free Trial
NoNo
Free/Freemium Version
YesNo
Premium Consulting/Integration Services
NoNo
Entry-level Setup FeeNo setup feeNo setup fee
Additional Details——
More Pricing Information
Community Pulse
Apache HadoopApache Hive
Considered Both Products
Hadoop
Chose Apache Hadoop
  • For real-time streaming, use Spark; can provide a stark contrast to the way MR works
  • Hadoop offers a scalable, cost-effective and highly available solution for big data storage and processing.
  • Amazon Redshift is somewhat closer to Hadoop. But to analyze Petabytes of data Hadoop …
Chose Apache Hadoop
not applicable - I have not evaluated any other products
Apache Hive
Chose Apache Hive
Apache Hive is a query language developed by Facebook to query over a large distributed dataset. Apache is a query engine that runs on top of HDFS, so it utilizes the resources of HDFS Hadoop setup, while Apache Spark is an in memory compute engine, and that's why [it is] much …
Chose Apache Hive
Apache Hadoop is built on top of the Hadoop File system so it gives its best when integrated with Hadoop. Data analysis and query optimization become very easy when used with Hadoop to perform Extract transform load operations. As Hadoop is a big data system and handles large …
Chose Apache Hive
To query a huge, distributed dataset, Apache Hive was built by Facebook. Unlike Apache Hive, Apache Spark is an in-memory computation engine, which is why it is significantly quicker than Apache Hive at querying large amounts of data. In contrast to Apache HBase, Apache Hive is …
Chose Apache Hive
Hive and Spark have the same parent company hence they share a lot of common features. Hive follows SQL syntax while Spark has support for RDD, DataFrame API. DataFrame API supports both SQL syntax and has custom functions to perform the same functionality. Spark is faster and …
Chose Apache Hive
Easy to understand, well supported by the community, good documentation. However, it is possible that SAP Business Warehouse could be a good fit, too, even maybe better. I did not have the chance to try it though. We selected Apache Hive because it was far less expensive and …
Chose Apache Hive
[We selected Apache Hive because] It's from apache and opensource. So it's free.
Chose Apache Hive
  • Faster response time and also can handle complex analytical queries
  • Can able to write custom function using python and hive
  • Able to connect using hadoop components and also using R
Chose Apache Hive

For storing bulk amount of data in a tabular manner, and where there's no need need of primary key, or just in case, if redundant data is received, it will not cause a problem. For small amounts of data, it does run MR, so beware. If your intention is to use it as a …

Chose Apache Hive
Hive is SQL compliant which makes it easy for the data folks compared to Pig
Chose Apache Hive
Apache Pig is probably the most direct technology to compare to Hive and has several different use cases to Hive. If you want to simplify processing tasks that run using MapReduce then Apache Pig may be a better tool for the job. However if you are going to be running many …
Chose Apache Hive
We selected Hive because it supports SQL, schema and provides structure on top of hadoop. Having data structured has its benefits, especially if there are thousands of users processing on the same data over and over again. Pig provides the ability to process unstructured data. …
Chose Apache Hive
Presto is slightly less reliable but much faster for interactive querying. These tools would not be replacements for each other, but rather complements.
Chose Apache Hive
Apache Hive was one of the first ways to query data out of a Hadoop cluster using SQL. However, there are many other tools out there that I believe will make Apache Hive a thing of the past. I have been working with in-memory data warehouses and other technologies that do not …
Top Pros
Top Cons
Best Alternatives
Apache HadoopApache Hive
Small Businesses

No answers on this topic

Google BigQuery
Google BigQuery
Score 8.7 out of 10
Medium-sized Companies
Cloudera Manager
Cloudera Manager
Score 9.9 out of 10
Cloudera Enterprise Data Hub
Cloudera Enterprise Data Hub
Score 9.0 out of 10
Enterprises
IBM Analytics Engine
IBM Analytics Engine
Score 7.9 out of 10
Oracle Exadata
Oracle Exadata
Score 8.5 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
Apache HadoopApache Hive
Likelihood to Recommend
8.9
(36 ratings)
8.0
(35 ratings)
Likelihood to Renew
9.6
(8 ratings)
10.0
(1 ratings)
Usability
8.5
(5 ratings)
8.5
(7 ratings)
Performance
8.0
(1 ratings)
-
(0 ratings)
Support Rating
7.5
(3 ratings)
7.0
(6 ratings)
Online Training
6.1
(2 ratings)
-
(0 ratings)
User Testimonials
Apache HadoopApache Hive
Likelihood to Recommend
Apache
Altogether, I want to say that Apache Hadoop is well-suited to a larger and unstructured data flow like an aggregation of web traffic or even advertising. I think Apache Hadoop is great when you literally have petabytes of data that need to be stored and processed on an ongoing basis. Also, I would recommend that the software should be supplemented with a faster and interactive database for a better querying service. Lastly, it's very cost-effective so it is good to give it a shot before coming to any conclusion.
Read full review
Apache
Software work execution is on a large scale, it is good to use for new projects or organizational changes, data lineage mapping has always been dubious but this one has had good results. You can store and synchronize data from different departments, the storage process can be manual but it is best automated.
Read full review
Pros
Apache
  • Handles large amounts of unstructured data well, for business level purposes
  • Is a good catchall because of this design, i.e. what does not fit into our vertical tables fits here.
  • Decent for large ETL pipelines and logging free-for-alls because of this, also.
Read full review
Apache
  • Apache Hive allows use to write expressive solutions to complex problems thanks to its SQL-like syntax.
  • Relatively easy to set up and start using.
  • Very little ramp-up to start using the actual product, documentation is very thorough, there is an active community, and the code base is constantly being improved.
Read full review
Cons
Apache
  • Less organizational support system. Bugs need to be fixed and outside help take a long time to push updates
  • Not for small data sets
  • Data security needs to be ramped up
  • Failure in NameNode has no replication which takes a lot of time to recover
Read full review
Apache
  • Some queries, particularly complex joins, are still quite slow and can take hours
  • Previous jobs and queries are not stored sometimes
  • Switching to Impala can sometimes be time-consuming (i.e. the system hangs, or is slow to respond).
  • Sometimes, directories and tables don't load properly which causes confusion
Read full review
Likelihood to Renew
Apache
Hadoop is organization-independent and can be used for various purposes ranging from archiving to reporting and can make use of economic, commodity hardware. There is also a lot of saving in terms of licensing costs - since most of the Hadoop ecosystem is available as open-source and is free
Read full review
Apache
Since I do not know the second data warehouse solution that integrate with HDFS as well as Hive.
Read full review
Usability
Apache
Great! Hadoop has an easy to use interface that mimics most other data warehouses. You can access your data via SQL and have it display in a terminal before exporting it to your business intelligence platform of choice. Of course, for smaller data sets, you can also export it to Microsoft Excel.
Read full review
Apache
Hive is a very good big data analysis and ad-hoc query platform, which supports scaling also. The BI processes can be easily integrated with Hadoop via the Hive. It can deal with a much larger data set that traditional RDBMS can not. It is a "must-have" component of the big data domain.
Read full review
Support Rating
Apache
We went with a third party for support, i.e., consultant. Had we gone with Azure or Cloudera, we would have obtained support directly from the vendor. my rating is more on the third party we selected and doesn't reflect the overall support available for Hadoop. I think we could have done better in our selection process, however, we were trying to use an already approved vendor within our organization. There is plenty of self-help available for Hadoop online.
Read full review
Apache
Apache Hive is a FOSS project and its open source. We need not definitely comment on anything about the support of open source and its developer community. But, it has got tremendous developer support, awesome documentation. I would justify the fact that much support can be gathered from the community backup.
Read full review
Online Training
Apache
Hadoop is a complex topic and best suited for classrom training. Online training are a waste of time and money.
Read full review
Apache
No answers on this topic
Alternatives Considered
Apache
Not used any other product than Hadoop and I don't think our company will switch to any other product, as Hadoop is providing excellent results. Our company is growing rapidly, Hadoop helps to keep up our performance and meet customer expectations. We also use HDFS which provides very high bandwidth to support MapReduce workloads.
Read full review
Apache
Besides Hive, I have used Google BigQuery, which is costly but have very high computation speed. Amazon Redshift is the another product, I used in my recent organisation. Both Redshift and BigQuery are managed solution whereas Hive needs to be managed
Read full review
Return on Investment
Apache
  • There are many advantages of Hadoop as first it has made the management and processing of extremely colossal data very easy and has simplified the lives of so many people including me.
  • Hadoop is quite interesting due to its new and improved features plus innovative functions.
Read full review
Apache
  • Apache hive is secured and scalable solution that helps in increasing the overall organization productivity.
  • Apache hive can handle and process large amount of data in a sufficient time manner.
  • It simplifies writing SQL queries, hence helping the organization as most companies use SQL for all query jobs.
Read full review
ScreenShots