Apache Hive is database/data warehouse software that supports data querying and analysis of large datasets stored in the Hadoop distributed file system (HDFS) and other compatible systems, and is distributed under an open source license.
N/A
OpenText Vertica
Score 10.0 out of 10
N/A
The Vertica Analytics Platform supplies enterprise data warehouses with big data analytics capabilities and modernization. Vertica is owned and supported by OpenText.
We selected Hive because it supports SQL, schema and provides structure on top of hadoop. Having data structured has its benefits, especially if there are thousands of users processing on the same data over and over again. Pig provides the ability to process unstructured data. …
Presto would be a good solution that would be less expensive and would also allow direct querying of all our data on Hadoop while maintaining good speed.
Vertica is great for small low complex queries and has great query performance over the other technologies that I have worked with. Vertica fails to Hive wrt scalability and resource isolation, where Hive exploits Hadoop's resource isolation. Presto is almost comparable to …
Software work execution is on a large scale, it is good to use for new projects or organizational changes, data lineage mapping has always been dubious but this one has had good results. You can store and synchronize data from different departments, the storage process can be manual but it is best automated.
Vertica as a data warehouse to deliver analytics in-house and even to your client base on scale is not rivaled anywhere in the market. Frankly, in my experience it is not even close to equaled. Because it is such a powerful data warehouse, some people attempt to use it as a transactional database. It certainly is not one of those. Individual row inserts are slow and do not perform well. Deletes are a whole other story. RDBMS it is definitely not. OLAP it rocks.
Apache Hive allows use to write expressive solutions to complex problems thanks to its SQL-like syntax.
Relatively easy to set up and start using.
Very little ramp-up to start using the actual product, documentation is very thorough, there is an active community, and the code base is constantly being improved.
Could use some work on better integrating with cloud providers and open source technologies. For AWS you will find an AMI in the marketplace and recently a connector for loading data from S3 directly was created. With last release, integration with Kafka was added that can help.
Managing large workloads (concurrent queries) is a bit challenging.
Having a way to provide an estimate on the duration for currently executing queries / etc. can be helpful. Vertica provides some counters for the query execution engine that are helpful but some may find confusing.
Unloading data over JDBC is very slow. We've had to come up with alternatives based on vsql, etc. Not a very clean, official on how to unload data.
Hive is a very good big data analysis and ad-hoc query platform, which supports scaling also. The BI processes can be easily integrated with Hadoop via the Hive. It can deal with a much larger data set that traditional RDBMS can not. It is a "must-have" component of the big data domain.
Apache Hive is a FOSS project and its open source. We need not definitely comment on anything about the support of open source and its developer community. But, it has got tremendous developer support, awesome documentation. I would justify the fact that much support can be gathered from the community backup.
I haven't had any recent opportunity to reach out to Vertica support. From what I remember, I believe whenever I reached out to them the experience was smooth.
Besides Hive, I have used Google BigQuery, which is costly but have very high computation speed. Amazon Redshift is the another product, I used in my recent organisation. Both Redshift and BigQuery are managed solution whereas Hive needs to be managed
Vertica performs well when the query has good stats and is tuned well. Options for GUI clients are ugly and outdated. IO optimized: it's a columnar store with no indexing structures to maintain like traditional databases. The indexing is achieved by storing the data sorted on disk, which itself is run transparently as a background process.