Azure Synapse Analytics (Azure SQL Data Warehouse)
Score 8.4 out of 10
N/A
Azure Synapse Analytics is described as the former Azure SQL Data Warehouse, evolved, and as a limitless analytics service that brings together enterprise data warehousing and Big Data analytics. It gives users the freedom to query data using either serverless or provisioned resources, at scale. Azure Synapse brings these two worlds together with a unified experience to ingest, prepare, manage, and serve data for immediate BI and machine learning needs.
$4,700
per month 5000 Synapse Commit Units (SCUs)
Pricing
Apache Spark
Azure Synapse Analytics (Azure SQL Data Warehouse)
Editions & Modules
No answers on this topic
Tier 1
$4,700
per month 5,000 Synapse Commit Units (SCUs)
Tier 2
$9,200
per month 10,000 Synapse Commit Units (SCUs)
Tier 3
$21,360
per month 24,000 Synapse Commit Units (SCUs)
Tier 4
$50,400
per month 60,000 Synapse Commit Units (SCUs)
Tier 5
$117,000
per month 150,000 Synapse Commit Units (SCUs)
Tier 6
$259,200
per month 360,000 Synapse Commit Units (SCUs)
Offerings
Pricing Offerings
Apache Spark
Azure Synapse Analytics (Azure SQL Data Warehouse)
Free Trial
No
No
Free/Freemium Version
No
No
Premium Consulting/Integration Services
No
No
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
—
More Pricing Information
Community Pulse
Apache Spark
Azure Synapse Analytics (Azure SQL Data Warehouse)
Azure Synapse Analytics (Azure SQL Data Warehouse)
Likelihood to Recommend
Apache
The software appears to run more efficiently than other big data tools, such as Hadoop. Given that, Apache Spark is well-suited for querying and trying to make sense of very, very large data sets. The software offers many advanced machine learning and econometrics tools, although these tools are used only partially because very large data sets require too much time when the data sets get too large. The software is not well-suited for projects that are not big data in size. The graphics and analytical output are subpar compared to other tools.
It's well suited for large, fastly growing, and frequently changing data warehouses (e.g., in startups). It's also suited for companies that want a single, relatively easy-to-use, centralized cloud service for all their data needs. Larger, more structured organizations could still benefit from this service by using Synapse Dedicated SQL Pools, knowing that costs will be much higher than other solutions. I think this product is not suited for smaller, simpler workloads (where an Azure SQL Database and a Data Factory could be enough) or very large scenarios, where it may be better to build custom infrastructure.
It takes some time to setup a proper SQL Datawarehouse architecture. Without proper SSIS/automation scripts, this can be a very daunting task.
It takes a lot of foresight when designing a Data Warehouse. If not properly designed, it can be very troublesome to use and/or modify later on.
It takes a lot of effort to maintain. Businesses are continually changing. With that, a full time staff member or more will be required to maintain the SQL Data Warehouse.
The only thing I dislike about spark's usability is the learning curve, there are many actions and transformations, however, its wide-range of uses for ETL processing, facility to integrate and it's multi-language support make this library a powerhouse for your data science solutions. It has especially aided us with its lightning-fast processing times.
The data warehouse portion is very much like old style on-prem SQL server, so most SQL skills one has mastered carry over easily. Azure Data Factory has an easy drag and drop system which allows quick building of pipelines with minimal coding. The Spark portion is the only really complex portion, but if there's an in-house python expert, then the Spark portion is also quiet useable.
1. It integrates very well with scala or python. 2. It's very easy to understand SQL interoperability. 3. Apache is way faster than the other competitive technologies. 4. The support from the Apache community is very huge for Spark. 5. Execution times are faster as compared to others. 6. There are a large number of forums available for Apache Spark. 7. The code availability for Apache Spark is simpler and easy to gain access to. 8. Many organizations use Apache Spark, so many solutions are available for existing applications.
Microsoft does its best to support Synapse. More and more articles are being added to the documentation, providing more useful information on best utilizing its features. The examples provided work well for basic knowledge, but more complex examples should be added to further assist in discovering the vast abilities that the system has.
Spark in comparison to similar technologies ends up being a one stop shop. You can achieve so much with this one framework instead of having to stitch and weave multiple technologies from the Hadoop stack, all while getting incredibility performance, minimal boilerplate, and getting the ability to write your application in the language of your choosing.
When client is already having or using Azure then it’s wise to go with Synapse rather than using Snowflake. We got a lot of help from Microsoft consultants and Microsoft partners while implementing our EDW via Synapse and support is easily available via Microsoft resources and blogs. I don’t see that with Snowflake