Likelihood to Recommend Google BigQuery is great for being the central datastore and entry point of data if you're on GCP. It seamlessly integrates with other Google products, meaning you can ingest data from other Google products with ease and little technical knowledge, and all of it is near real-time. Being serverless, BigQuery will scale with you, which means you don't have to worry about contention or spikes in demand/storage. This can, however, mean your costs can run away quickly or mount up at short notice.
Read full review Actian matrix is not good for small data sets. If you have a limited data pool, or do not plan on having multiple users/clients accessing a data source, stick with a more traditional relational database model - Access for the truly small user base, or a DB2 or Oracle back end if your going to have multiple users, and moderate sized data. Actian is for LARGE data sets (Big Data, in the industry parlance). Millions of rows of data from multiple sources with various down stream systems accessing the database. It is for data analytics of large data groups and intense data mining.
Read full review Pros First and foremost - Google BigQuery is great at quickly analyzing large amounts of data, which helps us understand things like customer behavior or product performance without waiting for a long time. It is very easy to use. Anyone in our team can easily ask questions about our data using simple language, like asking ChatGPT a question. This means everyone can find important information from our data without needing to be a data expert. It plays nicely with other tools we use, so we can seamlessly connect it with things like Google Cloud Storage for storing data or Data Studio for creating visual reports. This makes our work smoother and helps us collaborate better across different tasks. Read full review Super fast. Aggregate query such as SUM(), Count() returns result within seconds from a table with more than billion records. Excellent data compression. Easy maintenance. We managed this database without having a full time DBA. Support ANSI SQL and ODBC/JDBC. It's easy to connect to this database from other systems. Read full review Cons It is challenging to predict costs due to BigQuery's pay-per-query pricing model. User-friendly cost estimation tools, along with improved budget alerting features, could help users better manage and predict expenses. The BigQuery interface is less intuitive. A more user-friendly interface, enhanced documentation, and built-in tutorial systems could make BigQuery more accessible to a broader audience. Read full review Some of the bugs were annoying and QA definitely needs improvement Connectivity to Informatica and ETL providers Workload management could be better like when you compare with Teradata Read full review Likelihood to Renew We have to use this product as its a 3rd party supplier choice to utilise this product for their data side backend so will not be likely we will move away from this product in the future unless the 3rd party supplier decides to change data vendors.
Read full review Usability web UI is easy and convenient. Many RDBMS clients such as aqua data studio, Dbeaver data grid, and others connect. Range of well-documented APIs available. The range of features keeps expanding, increasing similar features to traditional RDBMS such as Oracle and DB2
Read full review I wish to give higher rating for the speed and efficiency in handling the queries, but only 6 because of consistent bugs we encounter
Read full review Support Rating BigQuery can be difficult to support because it is so solid as a product. Many of the issues you will see are related to your own data sets, however you may see issues importing data and managing jobs. If this occurs, it can be a challenge to get to speak to the correct person who can help you.
Read full review Faster initial response Trained professionals Very helpful in resolving issues Read full review Implementation Rating Leader failover setup is the toughest and lack of proper documentation is making things tough.
Read full review Alternatives Considered PowerBI can connect to GA4 for example but the data processing is more complicated and it takes longer to create dashboards. Azure is great once the data import has been configured but it's not an easy task for small businesses as it is with BigQuery.
Read full review Actian Matrix is our first big data analytics storage platform, and as I was not involved in the POC process to compare it to other products out on the market, unfortunately I cannot say if it is better than other Big Data storage options. I can say that it out performs products such as Oracle or UDB in regards to the volume of data it can easily index and handle.
Read full review Contract Terms and Pricing Model None so far. Very satisfied with the transparency on contract terms and pricing model.
Read full review Professional Services Google Support has kindly provide individual support and consultants to assist with the integration work. In the circumstance where the consultants are not present to support with the work, Google Support Helpline will always be available to answer to the queries without having to wait for more than 3 days.
Read full review Return on Investment Previously, running complex queries on our on-premise data warehouse could take hours. Google BigQuery processes the same queries in minutes. We estimate it saves our team at least 25% of their time. We can target our marketing campaigns very easily and understand our customer behaviour. It lets us personalize marketing campaigns and product recommendations and experience at least a 20% improvement in overall campaign performance. Now, we only pay for the resources we use. Saved $1 million annually on data infrastructure and data storage costs compared to our previous solution. Read full review ROI is great, less spending on full time DBA and that money could be use to add additional node. Negative - Not many developers are well aware of this tool, it takes some time to learn. Read full review ScreenShots Google BigQuery Screenshots