Based on my limited experience and use, and therefore limited global knowledge of the software, I would recommend it especially if the data that will be used as inputs to the model has previously worked on a spreadsheet such as Excel. I would also recommend it to analyze problems of medium and small size. Given the experience I have had when I have used it with large problems, there have been noticeable decreases in the speed of response (which are not associated with the size of the system of equations involved in the calculation). Excellent for processing linear programming models.
In my humble opinion, if you are working on something related to Statistics, RStudio is your go-to tool. But if you are looking for something in Machine Learning, look out for Python. The beauty is that there are packages now by which you can write Python/SQL in R. Cross-platform functionality like such makes RStudio way ahead of its competition. A couple of chinks in RStudio armor are very small and can be considered as nagging just for the sake of argument. Other than completely based on programming language, I couldn't find significant drawbacks to using RStudio. It is one of the best free software available in the market at present.
The support is incredibly professional and helpful, and they often go out of their way to help me when something doesn't work.
The one-click publishing from RStudio Connect is absolutely amazing, and I really like the way that it deploys your exact package versions, because otherwise, you can get in a terrible mess.
Python doesn't feel quite as native as R at the moment but I have definitely deployed stuff in R and Python that works beautifully which is really nice indeed.
On the few occasions when I have used it to deal with problems of optimization of relatively large parameters (with a large number of restrictions and decision variables), the program has been slower, not substantially but slower, than programs such as the WinQsb, even when the latter runs on 32-bit machines and not 64. That has caught my attention, even though it is not a real problem for the uses I give to the program.
Given my partial function as a university professor, it has been much more effective and practical to use other software, due to the limited options that the educational license associated with the software has.
Python integration is newer and still can be rough, especially with when using virtual environments.
RStudio Connect pricing feels very department focused, not quite an enterprise perspective.
Some of the RStudio packages don't follow conventional development guidelines (API breaking changes with minor version numbers) which can make supporting larger projects over longer timeframes difficult.
There is no viable alternative right now. The toolset is good and the functionality is increasing with every release. It is backed by regular releases and ongoing development by the RStudio team. There is good engagement with RStudio directly when support is required. Also there's a strong and growing community of developers who provide additional support and sample code.
For someone who learns how to use the software and picks up on the "language" of R, it's very easy to use. For beginners, it can be hard and might require a course, as well as the appropriate statistical training to understand what packages to use and when
RStudio is very available and cheap to use. It needs to be updated every once in a while, but the updates tend to be quick and they do not hinder my ability to make progress. I have not experienced any RStudio outages, and I have used the application quite a bit for a variety of statistical analyses
Since R is trendy among statisticians, you can find lots of help from the data science/ stats communities. If you need help with anything related to RStudio or R, google it or search on StackOverflow, you might easily find the solution that you are looking for.
We believe in building the models in Excel. A limitation with Excel is that Excel Solver can not take more than 200 decision variables with multiple constraints. It is cheap in terms of license and maintenance fees against other softwares which are available in the market.
RStudio was provided as the most customizable. It was also strictly the most feature-rich as far as enabling our organization to script, run, and make use of R open-source packages in our data analysis workstreams. It also provided some support for python, which was useful when we had R heavy code with some python threaded in. Overall we picked Rstudio for the features it provided for our data analysis needs and the ability to interface with our existing resources.
RStudio is very scalable as a product. The issue I have is that it doesn't necessarily fit in nicely with the mainly Microsoft environment that everybody else is using. Having RStudio for us means dedicated servers and recruiting staff who know how to manage the environment. This isn't a fault of the product at all, it's just part of the data science landscape that we all have to put up with. Having said that RStudio is absolutely great for running on low spec servers and there are loads of options to handle concurrency, memory use, etc.
- It has allowed finding ways to optimize (minimizing costs or times) the field processes involved in various projects.
It has even allowed, in specific cases where it was used for that purpose, to optimize the allocation of resources (people) to work in different jobs that present weekly variations of the activity that these people must perform.
It has allowed the sensitivity analysis of projects to changes in the decision variables related to them, which, and in very dynamic and changing environments, resulted in substantial decreases in money losses.
Using it for data science in a very big and old company, the most positive impact, from my point of view, has been the ability of spreading data culture across the group. Shortening the path from data to value.
Still it's hard to quantify economic benefits, we are struggling and it's a great point of attention, since splitting out the contribution of the single aspects of a project (and getting the RStudio pie) is complicated.
What is sure is that, in the long run, RStudio is boosting productivity and making the process in which is embedded more efficient (cost reduction).