Likelihood to Recommend The most important thing when using ClickHouse is to be clear that the scenarios in which you want to use it really are the right ones. Many users think that when a database is very fast for a specific use case, it can be extrapolated to other contexts (most of the time different) in which a previous analysis has not been carried out.
ClickHouse is an analytical database, as such, it should be used for such purposes, where the information is stored correctly, the data volumes are really large and the queries to be performed are not the typical traditional queries on several columns with multiple aggregations. ClickHouse is not the solution for this.
On the other hand, if your case is not one of the above, it is quite possible that ClickHouse can help you. Where ClickHouse shines is when you are looking for aggregation over a particular column in large volumes of data.
Read full review Presto is for interactive simple queries, where
Hive is for reliable processing. If you have a fact-dim join, presto is great..however for fact-fact joins presto is not the solution.. Presto is a great replacement for proprietary technology like
Vertica Read full review Pros Their MergeTree table engine provide impressive performance for data insert in bulk Not only data insert but also the way MergeTree engine uses Primary Keys to sort the data and perform data skipping based on the granules its also their secret for ridiculous fast queries Data compression its also great They provide especial table engines that allow you to read data directly from other sources like S3 Since its written with C++ you have very granular data types and especial ones like enum, LowCardinality and etc, they save you a lot of storage since are stored as integer values ClickHouse functions besides the ones that respect ANSI Standards are also awesome and useful Read full review Linking, embedding links and adding images is easy enough. Once you have become familiar with the interface, Presto becomes very quick & easy to use (but, you have to practice & repeat to know what you are doing - it is not as intuitive as one would hope). Organizing & design is fairly simple with click & drag parameters. Read full review Cons Avro data manipulation Kafka consistency DDL operations errors (by replica configuration) Read full review Presto was not designed for large fact fact joins. This is by design as presto does not leverage disk and used memory for processing which in turn makes it fast.. However, this is a tradeoff..in an ideal world, people would like to use one system for all their use cases, and presto should get exhaustive by solving this problem. Resource allocation is not similar to YARN and presto has a priority queue based query resource allocation..so a query that takes long takes longer...this might be alleviated by giving some more control back to the user to define priority/override. UDF Support is not available in presto. You will have to write your own functions..while this is good for performance, it comes at a huge overhead of building exclusively for presto and not being interoperable with other systems like Hive, SparkSQL etc. Read full review Alternatives Considered ClickHouse outperforms, especially in costs, since its compression/indexing engines are so smart, and even with very low computing power, you can already perform huge analyses of the data.
Read full review Presto is good for a templated design appeal. You cannot be too creative via this interface - but, the layout and options make the finalized visual product appealing to customers. The other design products I use are for different purposes and not really comparable to Presto.
Read full review Return on Investment Queries that used to take more than 2 minutes now take less than 1 second Possibility to analyze use cases in real time (before was impossible) The applications are more complete and the users decisions are better Read full review Presto has helped scale Uber's interactive data needs. We have migrated a lot out of proprietary tech like Vertica. Presto has helped build data driven applications on its stack than maintain a separate online/offline stack. Presto has helped us build data exploration tools by leveraging it's power of interactive and is immensely valuable for data scientists. Read full review ScreenShots