Apache Spark vs. Oracle Autonomous Data Warehouse

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Apache Spark
Score 8.8 out of 10
N/A
N/AN/A
Oracle Autonomous Data Warehouse
Score 9.3 out of 10
N/A
Oracle Autonomous Data Warehouse is optimized for analytic workloads, including data marts, data warehouses, data lakes, and data lakehouses. With Autonomous Data Warehouse, data scientists, business analysts, and nonexperts can discover business insights using data of any size and type. The solution is built for the cloud and optimized using Oracle Exadata.N/A
Pricing
Apache SparkOracle Autonomous Data Warehouse
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
Apache SparkOracle Autonomous Data Warehouse
Free Trial
NoNo
Free/Freemium Version
NoNo
Premium Consulting/Integration Services
NoNo
Entry-level Setup FeeNo setup feeNo setup fee
Additional Details——
More Pricing Information
Community Pulse
Apache SparkOracle Autonomous Data Warehouse
Top Pros
Top Cons
Best Alternatives
Apache SparkOracle Autonomous Data Warehouse
Small Businesses

No answers on this topic

Google BigQuery
Google BigQuery
Score 8.7 out of 10
Medium-sized Companies
Cloudera Manager
Cloudera Manager
Score 9.9 out of 10
Cloudera Enterprise Data Hub
Cloudera Enterprise Data Hub
Score 9.0 out of 10
Enterprises
IBM Analytics Engine
IBM Analytics Engine
Score 8.6 out of 10
Oracle Exadata
Oracle Exadata
Score 8.1 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
Apache SparkOracle Autonomous Data Warehouse
Likelihood to Recommend
10.0
(23 ratings)
8.9
(32 ratings)
Likelihood to Renew
10.0
(1 ratings)
8.0
(1 ratings)
Usability
10.0
(3 ratings)
-
(0 ratings)
Support Rating
8.7
(4 ratings)
-
(0 ratings)
Implementation Rating
-
(0 ratings)
9.0
(1 ratings)
User Testimonials
Apache SparkOracle Autonomous Data Warehouse
Likelihood to Recommend
Apache
Well suited: To most of the local run of datasets and non-prod systems - scalability is not a problem at all. Including data from multiple types of data sources is an added advantage. MLlib is a decently nice built-in library that can be used for most of the ML tasks. Less appropriate: We had to work on a RecSys where the music dataset that we used was around 300+Gb in size. We faced memory-based issues. Few times we also got memory errors. Also the MLlib library does not have support for advanced analytics and deep-learning frameworks support. Understanding the internals of the working of Apache Spark for beginners is highly not possible.
Read full review
Oracle
II would recommend Oracle Autonomous Data Warehouse to someone looking to fully automate the transferring of data especially in a warehouse scenario though I can see the elasticity of the suite that is offered and can see it is applicable in other scenarios not just warehouses.
Read full review
Pros
Apache
  • Rich APIs for data transformation making for very each to transform and prepare data in a distributed environment without worrying about memory issues
  • Faster in execution times compare to Hadoop and PIG Latin
  • Easy SQL interface to the same data set for people who are comfortable to explore data in a declarative manner
  • Interoperability between SQL and Scala / Python style of munging data
Read full review
Oracle
  • Very easy and fast to load data into the Oracle Autonomous Data Warehouse
  • Exceptionally fast retrieval of data joining 100 million row table with a billion row table plus the size of the database was reduced by a factor of 10 due to how Oracle store[s] and organise[s] data and indexes.
  • Flexibility with scaling up and down CPU on the fly when needed, and just stop it when not needed so you don't get charged when it is not running.
  • It is always patched and always available and you can add storage dynamically as you need it.
Read full review
Cons
Apache
  • Memory management. Very weak on that.
  • PySpark not as robust as scala with spark.
  • spark master HA is needed. Not as HA as it should be.
  • Locality should not be a necessity, but does help improvement. But would prefer no locality
Read full review
Oracle
  • It is very expensive product. But not to mention, there's good reasons why it is expensive.
  • The product should support more cloud based services. When we made the decision to buy the product (which was 20 years ago,) there was no such thing to consider, but moving to a cloud based data warehouse may promise more scalability, agility, and cost reduction. The new version of Data Warehouse came out on the way, but it looks a bit behind compared to other competitors.
  • Our healthcare data consists of 30% coded data (such as ICD 10 / SNOMED C,T) but the rests is narrative (such as clinical notes.). Oracle is the best for warehousing standardized data, but not a good choice when considering unstructured data, or a mix of the two.
Read full review
Likelihood to Renew
Apache
Capacity of computing data in cluster and fast speed.
Read full review
Oracle
Because
  • It is really simple to provision and configure.
  • Does not require continous attention from the DBA, autonomous features allows the database to perform most of the regular admin tasks without need for human intervention.
  • Allows to integrate multiple data sources on a central data warehouse, and explode the information stored with different analytic and reporting tools.
Read full review
Usability
Apache
The only thing I dislike about spark's usability is the learning curve, there are many actions and transformations, however, its wide-range of uses for ETL processing, facility to integrate and it's multi-language support make this library a powerhouse for your data science solutions. It has especially aided us with its lightning-fast processing times.
Read full review
Oracle
No answers on this topic
Support Rating
Apache
1. It integrates very well with scala or python. 2. It's very easy to understand SQL interoperability. 3. Apache is way faster than the other competitive technologies. 4. The support from the Apache community is very huge for Spark. 5. Execution times are faster as compared to others. 6. There are a large number of forums available for Apache Spark. 7. The code availability for Apache Spark is simpler and easy to gain access to. 8. Many organizations use Apache Spark, so many solutions are available for existing applications.
Read full review
Oracle
No answers on this topic
Implementation Rating
Apache
No answers on this topic
Oracle
Understanding Oracle Cloud Infrastructure is really simple, and Autonomous databases are even more. Using shared or dedicated infrastructure is one of the few things you need to consider at the moment of starting provisioning your Oracle Autonomous Data Warehouse.
Read full review
Alternatives Considered
Apache
Spark in comparison to similar technologies ends up being a one stop shop. You can achieve so much with this one framework instead of having to stitch and weave multiple technologies from the Hadoop stack, all while getting incredibility performance, minimal boilerplate, and getting the ability to write your application in the language of your choosing.
Read full review
Oracle
As I mentioned, I have also worked with Amazon Redshift, but it is not as versatile as Oracle Autonomous Data Warehouse and does not provide a large variety of products. Oracle Autonomous Data Warehouse is also more reliable than Amazon Redshift, hence why I have chosen it
Read full review
Return on Investment
Apache
  • Business leaders are able to take data driven decisions
  • Business users are able access to data in near real time now . Before using spark, they had to wait for at least 24 hours for data to be available
  • Business is able come up with new product ideas
Read full review
Oracle
  • Overall the business objective of all of our clients have been met positively with Oracle Data Warehouse. All of the required analysis the users were able to successfully carry out using the warehouse data.
  • Using a 3-tier architecture with the Oracle Data Warehouse at the back end the mid-tier has been integrated well. This is big plus in providing the necessary tools for end users of the data warehouse to carry out their analysis.
  • All of the various BI products (OBIEE, Cognos, etc.) are able to use and exploit the various analytic built-in functionalities of the Oracle Data Warehouse.
Read full review
ScreenShots