The Dataiku platform unifies all data work, from analytics to Generative AI. It can modernize enterprise analytics and accelerate time to insights with visual, cloud-based tooling for data preparation, visualization, and workflow automation.
N/A
Splunk Enterprise
Score 8.5 out of 10
N/A
Splunk is software for searching, monitoring, and analyzing machine-generated big data, via a web-style interface. It captures, indexes and correlates real-time data in a searchable repository from which it can generate graphs, reports, alerts, dashboards and visualizations.
N/A
Pricing
Dataiku
Splunk Enterprise
Editions & Modules
Discover
Contact sales team
Business
Contact sales team
Enterprise
Contact sales team
No answers on this topic
Offerings
Pricing Offerings
Dataiku
Splunk Enterprise
Free Trial
Yes
Yes
Free/Freemium Version
Yes
Yes
Premium Consulting/Integration Services
No
No
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
—
More Pricing Information
Community Pulse
Dataiku
Splunk Enterprise
Features
Dataiku
Splunk Enterprise
Platform Connectivity
Comparison of Platform Connectivity features of Product A and Product B
Dataiku
9.1
4 Ratings
8% above category average
Splunk Enterprise
-
Ratings
Connect to Multiple Data Sources
10.04 Ratings
00 Ratings
Extend Existing Data Sources
10.04 Ratings
00 Ratings
Automatic Data Format Detection
10.04 Ratings
00 Ratings
MDM Integration
6.52 Ratings
00 Ratings
Data Exploration
Comparison of Data Exploration features of Product A and Product B
Dataiku
10.0
4 Ratings
18% above category average
Splunk Enterprise
-
Ratings
Visualization
9.94 Ratings
00 Ratings
Interactive Data Analysis
10.04 Ratings
00 Ratings
Data Preparation
Comparison of Data Preparation features of Product A and Product B
Dataiku
10.0
4 Ratings
20% above category average
Splunk Enterprise
-
Ratings
Interactive Data Cleaning and Enrichment
10.04 Ratings
00 Ratings
Data Transformations
10.04 Ratings
00 Ratings
Data Encryption
10.04 Ratings
00 Ratings
Built-in Processors
10.04 Ratings
00 Ratings
Platform Data Modeling
Comparison of Platform Data Modeling features of Product A and Product B
Dataiku
8.7
4 Ratings
3% above category average
Splunk Enterprise
-
Ratings
Multiple Model Development Languages and Tools
5.14 Ratings
00 Ratings
Automated Machine Learning
10.04 Ratings
00 Ratings
Single platform for multiple model development
10.04 Ratings
00 Ratings
Self-Service Model Delivery
10.04 Ratings
00 Ratings
Model Deployment
Comparison of Model Deployment features of Product A and Product B
Dataiku
9.0
4 Ratings
5% above category average
Splunk Enterprise
-
Ratings
Flexible Model Publishing Options
9.04 Ratings
00 Ratings
Security, Governance, and Cost Controls
9.04 Ratings
00 Ratings
Security Information and Event Management (SIEM)
Comparison of Security Information and Event Management (SIEM) features of Product A and Product B
Dataiku
-
Ratings
Splunk Enterprise
7.2
56 Ratings
8% below category average
Centralized event and log data collection
00 Ratings
8.155 Ratings
Correlation
00 Ratings
8.154 Ratings
Event and log normalization/management
00 Ratings
8.455 Ratings
Deployment flexibility
00 Ratings
7.150 Ratings
Integration with Identity and Access Management Tools
Dataiku DSS is very well suited to handle large datasets and projects which requires a huge team to deliver results. This allows users to collaborate with each other while working on individual tasks. The workflow is easily streamlined and every action is backed up, allowing users to revert to specific tasks whenever required. While Dataiku DSS works seamlessly with all types of projects dealing with structured datasets, I haven't come across projects using Dataiku dealing with images/audio signals. But a workaround would be to store the images as vectors and perform the necessary tasks.
Pros: Splunk is very well suited if you have multiple log sources of related data. All of them can be correlated and tasks can be automated based on the requirement. Other than alerts, Splunk can also run a specific script of your choice, based on some defined conditions. Cons: If you have a few logs but a large number of log sources, Splunk can be very expensive.
We are using Splunk extensively in our projects and we have recently upgraded to Splunk version 6.0 which is quite efficient and giving expected results. We keep track of updates and new features Splunk introduces periodically and try to introduce those features in our day to day activities for improvement in our reporting system and other tasks.
As I have described earlier, the intuitiveness of this tool makes it great as well as the variety of users that can use this tool. Also, the plugins available in their repository provide solutions to various data science problems.
You can literally throw in a single word into Splunk and it will pull back all instances of that word across all of your logs for the time span you select (provided you have permission to see that data). We have several users who have taken a few of the free courses from Splunk that are able to pull data out of it everyday with little help at all.
The support team is very helpful, and even when we discover the missing features, after providing enough rational reasons and requirements, they put into it their development pipeline for the future release.
Splunk maintains a well resourced support system that has been consistent since we purchased the product. They help out in a timely manner and provide expert level information as needed. We typically open cases online and communicate when possible via e-mail and are able to resolve most issues with that method.
The online course was simple clear and described the main capabilities of the solution. There is also an initial module that can be done for free so anyone can familiarize themselves with the functionality of this solution. On the other hand, however, there could be more free online courses. Maybe even with a certificate, this would broaden the group of people who are familiar with the platform while increasing familiarity with the solution itself.
Strictly for Data Science operations, Anaconda can be considered as a subset of Dataiku DSS. While Anaconda supports Python and R programming languages, Dataiku also provides this facility, but also provides GUI to creates models with just a click of a button. This provides the flexibility to users who do not wish to alter the model hyperparameters in greater depths. Writing codes to extract meaningful data is time consuming compared to Dataiku's ability to perform feature engineering and data transformation through click of a button.
I wanted to learn a new language that I can quickly master and implement. Splunk is easy, fun to use and best of all, it can be developed in hours not days or weeks. Splunk is fundamentally a programming language that is minimal but yet powerful enough to collect, analyze and visualize data.