Likelihood to Recommend Perfect for projects where
Elasticsearch makes sense: if you decide to employ ES in a project, then you will almost inevitably use LogStash, and you should anyways. Such projects would include: 1. Data Science (reading, recording or measure web-based Analytics, Metrics) 2. Web Scraping (which was one of our earlier projects involving LogStash) 3. Syslog-ng Management: While I did point out that it can be a bit of an electric boo-ga-loo in finding an errant configuration item, it is still worth it to implement Syslog-ng management via LogStash: being able to fine-tune your log messages and then pipe them to other sources, depending on the data being read in, is incredibly powerful, and I would say is exemplar of what modern Computer Science looks like: Less Specialization in mathematics, and more specialization in storing and recording data (i.e. Less Engineering, and more Design).
Read full review Splunk is excellent when all your data is in one location. Its ability to correlate all that data is intuitive (once the hurdle of learning the query language is overcome). It is also easy to standardize the presentation of information to the company. When data is siloed/standalone, other systems can be cheaper and faster to implement.
Read full review Pros Logstash design is definitely perfect for the use case of ELK. Logstash has "drivers" using which it can inject from virtually any source. This takes the headache from source to implement those "drivers" to store data to ES. Logstash is fast, very fast. As per my observance, you don't need more than 1 or 2 servers for even big size projects. Data in different shape, size, and formats? No worries, Logstash can handle it. It lets you write simple rules to programmatically take decisions real-time on data. You can change your data on the fly! This is the CORE power of Logstash. The concept is similar to Kafka streams, the difference being the source and destination are application and ES respectively. Read full review This SIEM consolidates multiple data points and offers several features and benefits, creating custom dashboards and managing alert workflows. Splunk Cloud provides a simple way to have a central monitoring and security solution. Though it does not have a huge learning curve, you should spend some time learning the basics. Splunk Cloud enables me to create and schedule statistical reports on network use for Management. Read full review Cons Since it's a Java product, JVM tuning must be done for handling high-load. The persistent queue feature is nice, but I feel like most companies would want to use Kafka as a general storage location for persistent messages for all consumers to use. Using some pipeline of "Kafka input -> filter plugins -> Kafka output" seems like a good solution for data enrichment without needing to maintain a custom Kafka consumer to accomplish a similar feature. I would like to see more documentation around creating a distributed Logstash cluster because I imagine for high ingestion use cases, that would be necessary. Read full review The SPL programming language that the queries are built in is not very intuitive. There should be a better repository of pre-built queries for what I would think of as common Active Directory usage monitoring. I would like to see more free training/familiarization information made available. Read full review Usability Overall, it is very usable. I would like if recent searches were saved for longer because I always have to refer to my notes when I'm looking for something specific and it's been a few weeks. But that's a small issue, and the actual search and browsing interface is easy to use and powerful.
Read full review Support Rating Splunk Cloud support is sorely lacking unfortunately. The portal where you submit tickets is not very good and is lacking polish. Tickets are left for days without any updates and when chased it is only sometimes you get a reply back. I get the feeling the support team are very understaffed and have far too much going on. From what I know, Splunk is aware of this and seem to be trying to remedy it.
Read full review Alternatives Considered MongoDB and
Azure SQL Database are just that: Databases, and they allow you to pipe data into a database, which means that alot of the log filtering becomes a simple exercise of querying information from a DBMS. However, LogStash was chosen for it's ease of integration into our choice of using ELK
Elasticsearch is an obvious inclusion: Using Logstash with it's native DevOps stack its really rational
Read full review Splunk Cloud blows
Sumo Logic out of the water. The experience is night and day. We went from several highly stressed IT security professionals who were unsure if the data they were getting was valuable, to very happy IT security professionals who can now be more proactive and get all the information they need.
Read full review Return on Investment Positive: Learning curve was relatively easy for our team. We were up and running within a sprint. Positive: Managing Logstash has generally been easy. We configure it, and usually, don't have to worry about misbehavior. Negative: Updating/Rehydrating Logstash servers have been little challenging. We sometimes even loose data while Logstash is down. It requires more in-depth research and experiments to figure the fine-grained details. Negative: This is now one more application/skill/server to manage. Like any other servers, it requires proper grooming or else you will get in trouble. This is also a single point of failure which can have the ability to make other servers useless if it is not running. Read full review End-end visibility across your departmental silos Strengthen the overall global monitoring posture Move from Reactive to Proactive Monitoring Highly secure environment at your finger-tips Takes you away from managing infrastructure/administration, allows saving time & money. Reduce the overall TCO (Total Cost of Ownership) Read full review ScreenShots