Microsoft's Azure Machine Learning is and end-to-end data science and analytics solution that helps professional data scientists to prepare data, develop experiments, and deploy models in the cloud. It replaces the Azure Machine Learning Workbench.
Amazon Quicksight is a truly cloud-based solution so it works perfectly fine and saves a lot of expense in terms of hardware and maintenance. We can maintain it by ourselves by giving commands on UI. If you have connectivity issues then it can cause headaches because it's a cloud platform and it's a bit costly as compared to other services
User friendliness: This is by far the most user friendly tool I've seen in analytics. You don't need to know how to code at all! Just create a few blocks, connect a few lines and you are capable of running a boosted decision tree with a very high R squared!
Speed: Azure ML is a cloud based tool, so processing is not made with your computer, making the reliability and speed top notch!
Cost: If you don't know how to code, this is by far the cheapest machine learning tool out there. I believe it costs less than $15/month. If you know how to code, then R is free.
Connectivity: It is super easy to embed R or Python codes on Azure ML. So if you want to do more advanced stuff, or use a model that is not yet available on Azure ML, you can simply paste the code on R or Python there!
Microsoft environment: Many many companies rely on the Microsoft suite. And Azure ML connects perfectly with Excel, CSV and Access files.
It is easy to use and set up no need to put in so much effort. Once build, the dashboard can be used with multiple clients with the same domain. It provides multiple connectivity options which makes it a versatile option for reporting.
All of the other reporting platforms my organization has used previously were within our CRM and not a standalone program. In that we were very limited in being able to slice and dice the data the way that we wanted to
It is easier to learn, it has a very cost effective license for use, it has native build and created for Azure cloud services, and that makes it perfect when compared against the alternatives. As a Microsoft tool, it has been built to contain many visual features and improved usability even for non-specialist users.
Productivity: Instead of coding and recoding, Azure ML helped my organization to get to meaningful results faster;
Cost: Azure ML can save hundreds (or even thousands) of dollars for an organization, since the license costs around $15/month per seat.
Focus on insights and not on statistics: Since running a model is so easy, analysts can focus more on recommendations and insights, rather than statistical details