160 Reviews and Ratings
35 Reviews and Ratings
No answers on this topic
Well suited: To most of the local run of datasets and non-prod systems - scalability is not a problem at all. Including data from multiple types of data sources is an added advantage. MLlib is a decently nice built-in library that can be used for most of the ML tasks. Less appropriate: We had to work on a RecSys where the music dataset that we used was around 300+Gb in size. We faced memory-based issues. Few times we also got memory errors. Also the MLlib library does not have support for advanced analytics and deep-learning frameworks support. Understanding the internals of the working of Apache Spark for beginners is highly not possible.Incentivized
Based on my experience, streaming / real time / machine learning / AI type of processing and batch processing which needs less transformation are very well suited. Work load that needs complex transformation / multiple hops gets very complicated to implement. New feature like Dataflow SQL option will come in handy for sql heavy users.
Rich APIs for data transformation making for very each to transform and prepare data in a distributed environment without worrying about memory issuesFaster in execution times compare to Hadoop and PIG LatinEasy SQL interface to the same data set for people who are comfortable to explore data in a declarative mannerInteroperability between SQL and Scala / Python style of munging dataIncentivized
Streaming, Real time work loadBatch processingAuto scalingflexible pricing
Memory management. Very weak on that.PySpark not as robust as scala with spark.spark master HA is needed. Not as HA as it should be.Locality should not be a necessity, but does help improvement. But would prefer no localityIncentivized
inbuild template options can be expandedmore data connector optionseasy of use
Capacity of computing data in cluster and fast speed.
If the team looking to use Apache Spark is not used to debug and tweak settings for jobs to ensure maximum optimizations, it can be frustrating. However, the documentation and the support of the community on the internet can help resolve most issues. Moreover, it is highly configurable and it integrates with different tools (eg: it can be used by dbt core), which increase the scenarios where it can be usedIncentivized
1. It integrates very well with scala or python. 2. It's very easy to understand SQL interoperability. 3. Apache is way faster than the other competitive technologies. 4. The support from the Apache community is very huge for Spark. 5. Execution times are faster as compared to others. 6. There are a large number of forums available for Apache Spark. 7. The code availability for Apache Spark is simpler and easy to gain access to. 8. Many organizations use Apache Spark, so many solutions are available for existing applications.
Spark in comparison to similar technologies ends up being a one stop shop. You can achieve so much with this one framework instead of having to stitch and weave multiple technologies from the Hadoop stack, all while getting incredibility performance, minimal boilerplate, and getting the ability to write your application in the language of your choosing.Incentivized
Google Cloud Dataproc Cloud Datafusion
Business leaders are able to take data driven decisionsBusiness users are able access to data in near real time now . Before using spark, they had to wait for at least 24 hours for data to be availableBusiness is able come up with new product ideasIncentivized
cost saving from managing our own data center for ETL serversconsumption based pricingwith auto scaling feature, we were able to expand components to support work load