Apache Sqoop vs. Presto

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Apache Sqoop
Score 8.8 out of 10
N/A
Apache Sqoop is a tool for use with Hadoop, used to transfer data between Apache Hadoop and other, structured data stores.N/A
Presto
Score 4.0 out of 10
N/A
Presto is an open source SQL query engine designed to run queries on data stored in Hadoop or in traditional databases. Teradata supported development of Presto followed the acquisition of Hadapt and Revelytix.N/A
Pricing
Apache SqoopPresto
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
Apache SqoopPresto
Free Trial
NoNo
Free/Freemium Version
NoNo
Premium Consulting/Integration Services
NoNo
Entry-level Setup FeeNo setup feeNo setup fee
Additional Details
More Pricing Information
Best Alternatives
Apache SqoopPresto
Small Businesses

No answers on this topic

SingleStore
SingleStore
Score 9.5 out of 10
Medium-sized Companies
Cloudera Manager
Cloudera Manager
Score 9.7 out of 10
SingleStore
SingleStore
Score 9.5 out of 10
Enterprises
IBM Analytics Engine
IBM Analytics Engine
Score 9.3 out of 10
SingleStore
SingleStore
Score 9.5 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
Apache SqoopPresto
Likelihood to Recommend
9.0
(1 ratings)
7.8
(2 ratings)
User Testimonials
Apache SqoopPresto
Likelihood to Recommend
Apache
Sqoop is great for sending data between a JDBC compliant database and a Hadoop environment. Sqoop is built for those who need a few simple CLI options to import a selection of database tables into Hadoop, do large dataset analysis that could not commonly be done with that database system due to resource constraints, then export the results back into that database (or another). Sqoop falls short when there needs to be some extra, customized processing between database extract, and Hadoop loading, in which case Apache Spark's JDBC utilities might be preferred
Read full review
Open Source
Presto is for interactive simple queries, where Hive is for reliable processing. If you have a fact-dim join, presto is great..however for fact-fact joins presto is not the solution.. Presto is a great replacement for proprietary technology like Vertica
Read full review
Pros
Apache
  • Provides generalized JDBC extensions to migrate data between most database systems
  • Generates Java classes upon reading database records for use in other code utilizing Hadoop's client libraries
  • Allows for both import and export features
Read full review
Open Source
  • Linking, embedding links and adding images is easy enough.
  • Once you have become familiar with the interface, Presto becomes very quick & easy to use (but, you have to practice & repeat to know what you are doing - it is not as intuitive as one would hope).
  • Organizing & design is fairly simple with click & drag parameters.
Read full review
Cons
Apache
  • Sqoop2 development seems to have stalled. I have set it up outside of a Cloudera CDH installation, and I actually prefer it's "Sqoop Server" model better than just the CLI client version that is Sqoop1. This works especially well in a microservices environment, where there would be only one place to maintain the JDBC drivers to use for Sqoop.
Read full review
Open Source
  • Presto was not designed for large fact fact joins. This is by design as presto does not leverage disk and used memory for processing which in turn makes it fast.. However, this is a tradeoff..in an ideal world, people would like to use one system for all their use cases, and presto should get exhaustive by solving this problem.
  • Resource allocation is not similar to YARN and presto has a priority queue based query resource allocation..so a query that takes long takes longer...this might be alleviated by giving some more control back to the user to define priority/override.
  • UDF Support is not available in presto. You will have to write your own functions..while this is good for performance, it comes at a huge overhead of building exclusively for presto and not being interoperable with other systems like Hive, SparkSQL etc.
Read full review
Alternatives Considered
Apache
  • Sqoop comes preinstalled on the major Hadoop vendor distributions as the recommended product to import data from relational databases. The ability to extend it with additional JDBC drivers makes it very flexible for the environment it is installed within.
  • Spark also has a useful JDBC reader, and can manipulate data in more ways than Sqoop, and also upload to many other systems than just Hadoop.
  • Kafka Connect JDBC is more for streaming database updates using tools such as Oracle GoldenGate or Debezium.
  • Streamsets and Apache NiFi both provide a more "flow based programming" approach to graphically laying out connectors between various systems, including JDBC and Hadoop.
Read full review
Open Source
Presto is good for a templated design appeal. You cannot be too creative via this interface - but, the layout and options make the finalized visual product appealing to customers. The other design products I use are for different purposes and not really comparable to Presto.
Read full review
Return on Investment
Apache
  • When combined with Cloudera's HUE, it can enable non-technical users to easily import relational data into Hadoop.
  • Being able to manipulate large datasets in Hadoop, and them load them into a type of "materialized view" in an external database system has yielded great insights into the Hadoop datalake without continuously running large batch jobs.
  • Sqoop isn't very user-friendly for those uncomfortable with a CLI.
Read full review
Open Source
  • Presto has helped scale Uber's interactive data needs. We have migrated a lot out of proprietary tech like Vertica.
  • Presto has helped build data driven applications on its stack than maintain a separate online/offline stack.
  • Presto has helped us build data exploration tools by leveraging it's power of interactive and is immensely valuable for data scientists.
Read full review
ScreenShots