What users are saying about

Apache Sqoop

4 Ratings

Presto

8 Ratings

Apache Sqoop

4 Ratings
<a href='https://www.trustradius.com/static/about-trustradius-scoring' target='_blank' rel='nofollow'>trScore algorithm: Learn more.</a>
Score 8.7 out of 101

Presto

8 Ratings
<a href='https://www.trustradius.com/static/about-trustradius-scoring' target='_blank' rel='nofollow'>trScore algorithm: Learn more.</a>
Score 7.5 out of 101

Add comparison

Likelihood to Recommend

Apache Sqoop

Sqoop is great for sending data between a JDBC compliant database and a Hadoop environment. Sqoop is built for those who need a few simple CLI options to import a selection of database tables into Hadoop, do large dataset analysis that could not commonly be done with that database system due to resource constraints, then export the results back into that database (or another). Sqoop falls short when there needs to be some extra, customized processing between database extract, and Hadoop loading, in which case Apache Spark's JDBC utilities might be preferred
Jordan Moore profile photo

Presto

Presto is for interactive simple queries, where Hive is for reliable processing. If you have a fact-dim join, presto is great..however for fact-fact joins presto is not the solution.. Presto is a great replacement for proprietary technology like Vertica
Praveen Murugesan profile photo

Pros

  • Provides generalized JDBC extensions to migrate data between most database systems
  • Generates Java classes upon reading database records for use in other code utilizing Hadoop's client libraries
  • Allows for both import and export features
Jordan Moore profile photo
  • Fast - Presto, is incredibly fast due to its optimized query engine and is well suited for interactive analysis.
  • Flexible - Presto is highly flexible as it operates with a plug and play model for data sources. Joining and query across different data sources is very easy with presto (eg. HDFS, MySQL, Kafka).
  • ANSI Sql - Presto follows ANSI SQL which is the recognized SQL language and hence helps allow easy query migration without much overhead.
  • Large Fact + Small Dimension table joins made fast - By design presto excels most distributed query engines out there in this type of queries.
Praveen Murugesan profile photo

Cons

  • Sqoop2 development seems to have stalled. I have set it up outside of a Cloudera CDH installation, and I actually prefer it's "Sqoop Server" model better than just the CLI client version that is Sqoop1. This works especially well in a microservices environment, where there would be only one place to maintain the JDBC drivers to use for Sqoop.
Jordan Moore profile photo
  • Presto was not designed for large fact fact joins. This is by design as presto does not leverage disk and used memory for processing which in turn makes it fast.. However, this is a tradeoff..in an ideal world, people would like to use one system for all their use cases, and presto should get exhaustive by solving this problem.
  • Resource allocation is not similar to YARN and presto has a priority queue based query resource allocation..so a query that takes long takes longer...this might be alleviated by giving some more control back to the user to define priority/override.
  • UDF Support is not available in presto. You will have to write your own functions..while this is good for performance, it comes at a huge overhead of building exclusively for presto and not being interoperable with other systems like Hive, SparkSQL etc.
Praveen Murugesan profile photo

Alternatives Considered

  • Sqoop comes preinstalled on the major Hadoop vendor distributions as the recommended product to import data from relational databases. The ability to extend it with additional JDBC drivers makes it very flexible for the environment it is installed within.
  • Spark also has a useful JDBC reader, and can manipulate data in more ways than Sqoop, and also upload to many other systems than just Hadoop.
  • Kafka Connect JDBC is more for streaming database updates using tools such as Oracle GoldenGate or Debezium.
  • Streamsets and Apache NiFi both provide a more "flow based programming" approach to graphically laying out connectors between various systems, including JDBC and Hadoop.
Jordan Moore profile photo
I think Presto is one of the best solutions out there today at the cutting edge for interactive query analysis. One of the challenges is presto is a niche tool for the interactive query use case and doesn't have the knobs and whistles as much as Spark. In the foreseeable future if they are able to make presto work without the need for Hive, solving all the gaps it could be game changing and can be a direct threat to spark
Praveen Murugesan profile photo

Return on Investment

  • When combined with Cloudera's HUE, it can enable non-technical users to easily import relational data into Hadoop.
  • Being able to manipulate large datasets in Hadoop, and them load them into a type of "materialized view" in an external database system has yielded great insights into the Hadoop datalake without continuously running large batch jobs.
  • Sqoop isn't very user-friendly for those uncomfortable with a CLI.
Jordan Moore profile photo
  • Presto has helped scale Uber's interactive data needs. We have migrated a lot out of proprietary tech like Vertica.
  • Presto has helped build data driven applications on its stack than maintain a separate online/offline stack.
  • Presto has helped us build data exploration tools by leveraging it's power of interactive and is immensely valuable for data scientists.
Praveen Murugesan profile photo

Pricing Details

Apache Sqoop

General
Free Trial
Free/Freemium Version
Premium Consulting/Integration Services
Entry-level set up fee?
No
Additional Pricing Details

Presto

General
Free Trial
Free/Freemium Version
Premium Consulting/Integration Services
Entry-level set up fee?
No
Additional Pricing Details