Microsoft's Azure Data Factory is a service built for all data integration needs and skill levels. It is designed to allow the user to easily construct ETL and ELT processes code-free within the intuitive visual environment, or write one's own code. Visually integrate data sources using more than 80 natively built and maintenance-free connectors at no added cost. Focus on data—the serverless integration service does the rest.
N/A
Fivetran
Score 8.4 out of 10
N/A
Fivetran replicates applications, databases, events and files into a high-performance data warehouse, after a five minute setup. The vendor says their standardized cloud pipelines are fully managed and zero-maintenance. The vendor says Fivetran began with a realization: For modern companies using cloud-based software and storage, traditional ETL tools badly underperformed, and the complicated configurations they required often led to project failures. To streamline and accelerate…
Azure Data Factory helps us automate to schedule jobs as per customer demands to make ETL triggers when the need arises. Anyone can define the workflow with the Azure Data Factory UI designer tool and easily test the systems. It helped us automate the same workflow with …
Fivetran is more intuitive and easier to use than code-based ETL/ELT tools. The data modelling Fivetran performs makes the data more usable more quickly. Fivetran's dbt support and integration is unique.
Best scenario is for ETL process. The flexibility and connectivity is outstanding. For our environment, SAP data connectivity with Azure Data Factory offers very limited features compared to SAP Data Sphere. Due to the limited modelling capacity of the tool, we use Databricks for data modelling and cleaning. Usage of multiple tools could have been avoided if adf has modelling capabilities.
Fivetran's business model justifies the use-case where we require data from a single source basically a lot of data but if the requirement is not on the heavier side, Fivetran comes to costly operation when compared to its peers. Otherwise, I'll recommend Fivetran for stability and update and seamless service provider.
Granularity of Errors: Sometimes, Azure Data Factory provides error messages that are too generic or vague for us, making it challenging to pinpoint the exact cause of a pipeline failure. Enhanced error messages with more actionable details would greatly assist us as users in debugging their pipelines.
Pipeline Design UI: In my experience, the visual interface for designing pipelines, especially when dealing with complex workflows or numerous activities, can become cluttered. I think a more intuitive and scalable design interface would improve usability. In my opinion, features like zoom, better alignment tools, or grouping capabilities could make managing intricate designs more manageable.
Native Support: While Azure Data Factory does support incremental data loads, in my experience, the setup can be somewhat manual and complex. I think native and more straightforward support for Change Data Capture, especially from popular databases, would simplify the process of capturing and processing only the changed data, making regular data updates more efficient
So far product has performed as expected. We were noticing some performance issues, but they were largely Synapse related. This has led to a shift from Synapse to Databricks. Overall this has delayed our analytic platform. Once databricks becomes fully operational, Azure Data Factory will be critical to our environment and future success.
Very easy and intuitive to setup and maintain as there usually are not that many options. Very well documented (e.g. how to setup each connector, how the schema looks like, any specific features of this connector etc.). Also the operation is intuitive, e.g. you have status pages, log pages, configuration pages etc. for each connector.
It runs pretty well and gets our data from point A to point cluster quickly enough. Honestly, it's not something I think about unless it breaks and that's pretty rare.
We have not had need to engage with Microsoft much on Azure Data Factory, but they have been responsive and helpful when needed. This being said, we have not had a major emergency or outage requiring their intervention. The score of seven is a representation that they have done well for now, but have not proved out their support for a significant issue
Azure Data Factory helps us automate to schedule jobs as per customer demands to make ETL triggers when the need arises. Anyone can define the workflow with the Azure Data Factory UI designer tool and easily test the systems. It helped us automate the same workflow with programming languages like Python or automation tools like ansible. Numerous options for connectivity be it a database or storage account helps us move data transfer to the cloud or on-premise systems.
We never seriously considered using anything else. Our data engineers had used Fivetran extensively in previous roles so when it came time to make a decision, there wasn't much of a process. They gladly signed the contract with Fivetran pretty quickly.