Microsoft's Azure Data Factory is a service built for all data integration needs and skill levels. It is designed to allow the user to easily construct ETL and ELT processes code-free within the intuitive visual environment, or write one's own code. Visually integrate data sources using more than 80 natively built and maintenance-free connectors at no added cost. Focus on data—the serverless integration service does the rest.
N/A
SAP Data Intelligence
Score 8.1 out of 10
N/A
SAP Data Intelligence is presented by the vendor as a single solution to innovate with data. It provides data-driven innovation in the cloud, on premise, and through BYOL deployments. It is described by the vendor as the new evolution of the company's data orchestration and management solution running on Kubernetes, released by SAP in 2017 to deal with big data and complex data orchestration working across distributed landscapes and processing engine.
As we are implementing and using SAP 4HANA platform in other related projects, we have seen an advantage in utilizing SAP Data Intelligence. Also, with improved ETL pipelines and migration functionalities implemented, we have considered the financial aspect of the platform - …
Well-suited Scenarios for Azure Data Factory (ADF): When an organization has data sources spread across on-premises databases and cloud storage solutions, I think Azure Data Factory is excellent for integrating these sources. Azure Data Factory's integration with Azure Databricks allows it to handle large-scale data transformations effectively, leveraging the power of distributed processing. For regular ETL or ELT processes that need to run at specific intervals (daily, weekly, etc.), I think Azure Data Factory's scheduling capabilities are very handy. Less Appropriate Scenarios for Azure Data Factory: Real-time Data Streaming - Azure Data Factory is primarily batch-oriented. Simple Data Copy Tasks - For straightforward data copy tasks without the need for transformation or complex workflows, in my opinion, using Azure Data Factory might be overkill; simpler tools or scripts could suffice. Advanced Data Science Workflows: While Azure Data Factory can handle data prep and transformation, in my experience, it's not designed for in-depth data science tasks. I think for advanced analytics, machine learning, or statistical modeling, integration with specialized tools would be necessary.
If you have an SAP products ecosystem in your IT landscape, it becomes a no-brainer to go ahead with an SAP Data Intelligence product for your data orchestration, data management, and advanced data analytics needs, such as data preparation for your AI/ML processes. It provides a seamless integration with other SAP products.
It allows copying data from various types of data sources like on-premise files, Azure Database, Excel, JSON, Azure Synapse, API, etc. to the desired destination.
We can use linked service in multiple pipeline/data load.
It also allows the running of SSIS & SSMS packages which makes it an easy-to-use ETL & ELT tool.
Data transfer speed tends to be slow when there is poor internet connection since SAP Data Intelligence don’t synchronize data while offline. However, this is not vendor fault, that’s why we have implemented robust wireless technology internet connection in our organization.
Allow collaborations among various personas with insights as ratings and comments on the datasets Reuse knowledges on the datasets for new users Next-Gen Data Management and Artificial Intelligence
I think the troubleshooting process might be streamlined with improved error recording and tracing. A lot of information about issues and how to fix them is hidden away in the Kubernetes pods themselves. I'm not sure whether SAP Data Intelligence can fix this problem it may be connected to Kubernetes's design, in which case fixing it could need modifications inside Kubernetes itself.
We have not had need to engage with Microsoft much on Azure Data Factory, but they have been responsive and helpful when needed. This being said, we have not had a major emergency or outage requiring their intervention. The score of seven is a representation that they have done well for now, but have not proved out their support for a significant issue
Initially we struggle to get help from SAP but then dedicated Dev angel was assigned to us and that simplify the overall support scenario. There is still room of improvement in documentation around SAP Data intelligence. We struggle a lot to initially understand the feature and required help around performance improvement area,
The easy integration with other Microsoft software as well as high processing speed, very flexible cost, and high level of security of Microsoft Azure products and services stack up against other similar products.
One of the reasons to pick SAP Data Intelligence is the speed and security it provides, in addition to the excellent support it provides. It is also compatible with all popular databases, which is another reason to choose it.