The Apache HBase project's goal is the hosting of very large tables -- billions of rows X millions of columns -- atop clusters of commodity hardware. Apache HBase is an open-source, distributed, versioned, non-relational database modeled after Google's Bigtable.
N/A
Teradata Vantage
Score 8.7 out of 10
N/A
Teradata Vantage is presented as a modern analytics cloud platform that unifies everything—data lakes, data warehouses, analytics, and new data sources and types. Supports hybrid multi-cloud environments and priced for flexibility, Vantage delivers unlimited intelligence to build the future of business.
Users can deploy Vantage on public clouds (such as AWS, Azure, and GCP), hybrid multi-cloud environments, on-premises with Teradata IntelliFlex, or on commodity hardware with VMware.
$4,800
per month
Pricing
Apache HBase
Teradata Vantage
Editions & Modules
No answers on this topic
Teradata VantageCloud Lake
from $4800
per month
Teradata VantageCloud Enterprise
from $9000
per month
Offerings
Pricing Offerings
HBase
Teradata Vantage
Free Trial
No
Yes
Free/Freemium Version
No
No
Premium Consulting/Integration Services
No
Yes
Entry-level Setup Fee
No setup fee
Optional
Additional Details
—
—
More Pricing Information
Community Pulse
Apache HBase
Teradata Vantage
Features
Apache HBase
Teradata Vantage
NoSQL Databases
Comparison of NoSQL Databases features of Product A and Product B
Hbase is well suited for large organizations with millions of operations performing on tables, real-time lookup of records in a table, range queries, random reads and writes and online analytics operations. Hbase cannot be replaced for traditional databases as it cannot support all the features, CPU and memory intensive. Observed increased latency when using with MapReduce job joins.
Teradata Vantage is well suited for large scale ETL pipelines like the ones we developed for anti money laundering risk matrices. It handles heavy joins, aggregations, and transformations on transactional data efficiently. We generate alert variables, adjust for inflation, and monitor establishments monthly with it, all integrated with Python and Control-M for a centralised automation across the company. For less appropriate, I would say that heavy resource demands might slow down experimentation for iterative work.
Stored procedures functionality is not available so it should be implemented.
HBase is CPU and Memory intensive with large sequential input or output access while as Map Reduce jobs are primarily input or output bound with fixed memory. HBase integrated with Map-reduce jobs will result in random latencies.
Teradata is an excellent option but only for a massive amount of data warehousing or analysis. If your data is not that big then it could be a misfit for your company and cost you a lot. The cost associated is quite extensive as compared to some other alternative RDBMS systems available in the market.
Migration of data from Teradata to some other RDBMS systems is quite painful as the transition is not that smooth and you need to follow many steps and even if one of them fails. You need to start from the beginning almost.
Last but not least the UI is pretty outdated and needs a revamp. Though it is simple, it needs to be presented in a much better way and more advanced options need to bee presented on the front page itself.
There's really not anything else out there that I've seen comparable for my use cases. HBase has never proven me wrong. Some companies align their whole business on HBase and are moving all of their infrastructure from other database engines to HBase. It's also open source and has a very collaborative community.
Teradata is a mature RDBMS system that expands its functionality towards the current cloud capabilities like object storage and flexible compute scale.
I rate Teradata Vantage as a business intelligence analyst. Although I think Teradata Vantage studio could be improved, in the overall, Teradata Vantage perform as expected in the development of our business models. It allows the BI team to analyze big amount of data, develop models and test them.
We have meetings at the beginning with the technical team to explain our requirements to them and they were really putting in a lot of effort to come up with a solution which will address all our needs. They implemented the software and also trained a few of our resources on the same too. We can get in touch with them now as well whenever we run into a roadblock but it's very less now.
Cassandra os great for writes. But with large datasets, depending, not as great as HBASE. Cassandra does support parquet now. HBase still performance issues. Cassandra has use cases of being used as time series. HBase, it fails miserably. GeoSpatial data, Hbase does work to an extent. HA between the two are almost the same.
Teradata is way ahead of its competitor because of its unique features of ensuring data privacy and data never gets corrupted even in worst case scenario. In most cases, the data corruption is a major issue if left unused and it leads to important data being wiped off which in ideal case should be stored for 3 years
As Hbase is a noSql database, here we don't have transaction support and we cannot do many operations on the data.
Not having the feature of primary or a composite primary key is an issue as the architecture to be defined cannot be the same legacy type. Also the transaction concept is not applicable here.
The way data is printed on console is not so user-friendly. So we had to use some abstraction over HBase (eg apache phoenix) which means there is one new component to handle.
Moving to Teradata in the Cloud-enabled a level of agility that previously didn't exist in the organization. It also enabled a level of analytic competency that was not achievable using other options on the aggressive timeline that was required. We didn't want to settle for reinventing a wheel when we had a super tuned performance capable beast readily available in Teradata. Teradata lets us focus on our business rather than spending money and effort trying to design software or database foundations features on an open source or lower performance platform.