Astra DB from DataStax is a vector database for developers that need to get accurate Generative AI applications into production, fast.
N/A
PostgreSQL
Score 8.7 out of 10
N/A
PostgreSQL (alternately Postgres) is a free and open source object-relational database system boasting over 30 years of active development, reliability, feature robustness, and performance. It supports SQL and is designed to support various workloads flexibly.
We chose Astra as our primary database for time series data was already on Apache Cassandra. We also utilize a small postgres database for relational data within the application, but it made sense to migrate the data to Astra from Apache Cassandra.
For the workloads we use Astra DB for it was a better choice than the other databases. It worked out to be more scalable and cost affective than the traditional relational databases. Also performant and without the downsides of size limits compared to other services.
It's not possible to make a straightforward comparison between the other DB and Astra, mainly because Astra is based more in providing a service for managing larger chunks of data than a RDS. However, what I can say is that the configuration therefore implementation of Astra is …
We use Astra DB to improve our management systems. Storing data has become hassle-free and quite simple. When launching a Cassandra-based cloud application, Astra DB is exactly what you need. In addition to the standard training programs and videos, the extended support and training require significant additional effort to activate and cover which I feel is a bit more tedious task.
PostgreSQL, unlike other databases, is user-friendly and uses an open-source database. Ideal for relational databases, they can be accessed when speed and efficiency are required. It enables high-availability and disaster recovery replication from instance to instance. PostgreSQL can store data in a JSON format, including hashes, keys, and values. Multi-platform compatibility is also a big selling point. We could, however, use all the DBMS’s cores. While it works well in fast environments, it can be problematic in slower ones or cause multiple master replication.
The stability it offers, its speed of response and its resource management is excellent even in complex database environments and with low-resource machines.
The large amount of resources it has in addition to the many own and third-party tools that are compatible that make productivity greatly increase.
The adaptability in various environments, whether distributed or not, [is a] complete set of configuration options which allows to greatly customize the work configuration according to the needs that are required.
The excellent handling of referential and transactional integrity, its internal security scheme, the ease with which we can create backups are some of the strengths that can be mentioned.
The support team sometimes requires the escalate button pressed on tickets, to get timely responses. I will say, once the ticket is escalated, action is taken.
They require better documentation on the migration of data. The three primary methods for migrating large data volumes are bulk, Cassandra Data Migrator, and ZDM (Zero Downtime Migration Utility). Over time I have become very familiar will all three of these methods; however, through working with the Services team and the support team, it seemed like we were breaking new ground. I feel if the utilities were better documented and included some examples and/or use cases from large data migrations; this process would have been easier. One lesson learned is you likely need to migrate your application servers to the same cloud provider you host Astra on; otherwise, the latency is too large for latency-sensitive applications.
The query syntax for JSON fields is unwieldy when you start getting into complex queries with many joins.
I wish there was a distinction (a flag) you could set for automated scripts vs working in the psql CLI, which would provide an 'Are you sure you want to do X?' type prompt if your query is likely to affect more than a certain number of rows. Especially on updates/deletes. Setting the flag in the headless(scripted) flow would disable the prompt.
Better documentation around JSON and Array aggregation, with more examples of how the data is transformed.
Postgresql is the best tool out there for relational data so I have to give it a high rating when it comes to analytics, data availability and consistency, so on and so forth. SQL is also a relatively consistent language so when it comes to building new tables and loading data in from the OLTP database, there are enough tools where we can perform ETL on a scalable basis.
The data queries are relatively quick for a small to medium sized table. With complex joins, and a wide and deep table however, the performance of the query has room for improvement.
Their response time is fast, in case you do not contact them during business hours, they give a very good follow-up to your case. They also facilitate video calls if necessary for debugging.
There are several companies that you can contract for technical support, like EnterpriseDB or Percona, both first level in expertise and commitment to the software.
But we do not have contracts with them, we have done all the way from googling to forums, and never have a problem that we cannot resolve or pass around. And for dozens of projects and more than 15 years now.
The online training is request based. Had there been recorded videos available online for potential users to benefit from, I could have rated it higher. The online documentation however is very helpful. The online documentation PDF is downloadable and allows users to pace their own learning. With examples and code snippets, the documentation is great starting point.
We know Astra is built on Cassandra / Kubernetes / Stargate and can work on any cloud. The competitors we reviewed are cloud specific and create a lock in. We also have the option to run Cassandra / Stargate ourselves if we wanted to. The competitors don’t give that option
Postgres stacks up just [fine] along the other big players in the RDBMS world. It's very popular for a reason. It's very close to MySQL in terms of cost and features - I'd pick either solution and be just as happy. Compared to Oracle it is a MUCH cheaper solution that is just as usable.
Our use case and requirements for scaling don't allow me to comment on ability to scale to millions of users, however from what I know of other use cases where Astra has been applied, and Astra's architectural design makes me confident it will be able to scale to meet most requirements
The high availability capabilities of Astra DB can assist in reducing downtime, which is crucial for revenue-generating applications.
The developer-friendly features of Astra DB, as well as support for known query languages, can help expedite development, save development time, and minimize labor costs. This can result in a shorter time to market and a higher ROI.
The user-role system has saved us tons of time and thus money. As I mentioned in the "Use Case" section, Postgres is not only used by engineering but also finance to measure how much to charge customers and customer support to debug customer issues. Sure, it's not easy for non-technical employees to psql in and view raw tables, but it has saved engineering hundreds of man-hours that would have had to be spent on building equivalent tools to serve finance or customer support.
It provides incredibly trustworthy storage for wherever customer data dumped in. In our 6 years of Postgres existence, we have not lost a byte of customer data due to Postgres messing up a transaction or during the multiple times the hard-drives failed (thanks to ACID compliance!).
This is less significant, but Postgres is also quite easy to manage (unless you are going above and beyond to squeeze out every last bit of performance). There's not much to configure, and the out of the box settings are quite sane. That has saved us engineers lots of time that would have gone into Postgres administration.