We've been super happy with Astra DB. It's been extremely well-suited for our vector search needs as described in previous responses. With Astra DB’s high-performance vector search, Maester’s AI dynamically optimizes responses in real-time, adapting to new user interactions without requiring costly retraining cycles.
Neo4J is great for creating network graphs or illustrating how things are related. It is also good for finding individuals or things that have greater influence than others in a system. It is not appropriate if you have standard data sets that can be analyzed using conventional methods or visualized using Tableau, for example.
We need to be able to process a lot of data (our biggest clients process hundreds of milions of transactions every month). However, it is not only the amount of data, it is also an unpredictable patterns with spikes occuring at different points of time - something athat Astra is great at.
Our processing needs to be extremaly fast. Some of our clients use our enrichment in a synchronous way, meaning that any delay in processing is holding up the whole transaction lifecycle and can have a major impact on the client. Astra is very fast.
A close collaboration with GCP makes our life very easy. All of our technology sits in Google Cloud, so having Astra in there makes it a no-brainer solution for us.
Mature Query language, I found Cypher QL to be mature in handling all sorts of problems we throw at it. Its expressive enough to be intuitive while providing rich features for various scenarios.
Native support for REST API, that makes interacting with Neo4J intuitive and easy.
Support for Procedures in Java, procedures are custom code that could be added to the Neo4J to write custom querying of data. The best part about the procedures is it could be invoked using the REST API. This allows us to overcome any shortcomings from their Cypher query language.
Nice UI and interface for executing the Query and visualizing the response.
UI access controlled by User credentials allows for neat access controls.
Awesome free community edition for small-scale projects.
The support team sometimes requires the escalate button pressed on tickets, to get timely responses. I will say, once the ticket is escalated, action is taken.
They require better documentation on the migration of data. The three primary methods for migrating large data volumes are bulk, Cassandra Data Migrator, and ZDM (Zero Downtime Migration Utility). Over time I have become very familiar will all three of these methods; however, through working with the Services team and the support team, it seemed like we were breaking new ground. I feel if the utilities were better documented and included some examples and/or use cases from large data migrations; this process would have been easier. One lesson learned is you likely need to migrate your application servers to the same cloud provider you host Astra on; otherwise, the latency is too large for latency-sensitive applications.
One of the hardest challenges that Neo4j had to solve was the horizontal scaling problem. I am not updated on recent developments, but at the time of my use, I couldn't find a viable solution.
Neo4j does not play with other open source APIs like Blueprint. You have to use the native Neo4j API.
There wasn't a visual tool to see your data. Of course, third party tools are always available, but I would have loved something which came with the Neo4j bundle. I love that Docker comes bundled with Kitematic, so it's not wrong to hope that Neo4j could also ship with some default visualization software.
Learning cypher was super easy coming from a SQL background. Furthermore, the docs Neo4j provides on their website make it really easy to pull up a reference, guide or a quick example. The mac app they provide is also really well designed with good visualisation tools, with the ability to easily use colour, line thickness etc to help navigate your data.
Their response time is fast, in case you do not contact them during business hours, they give a very good follow-up to your case. They also facilitate video calls if necessary for debugging.
Graph, search, analytics, administration, developer tooling, and monitoring are all incorporated into a single platform by Astra DB. Mongo Db is a self-managed infrastructure. Astra DB has Wide column store and Mongo DB has Document store. The best thing is that Astra DB operates on Java while Mongo DB operates on C++
Neo4j is a graph store and has different use cases compared to another NoSQL Document store like MongoDB. MongoDB is a bad choice when joins are common as existing operators for joining two documents (similar to tables in a relational store) as Mongo 3.5 use SQL like join algorithms which are expensive. MongoDB is a great choice when distributed schemaless rich document structures are important requirements. Cross document transaction support is not native to MongoDB yet, whereas Neo4J is ACID complaint with all its operations.
We are well aware of the Cassandra architecture and familiar with the open source tooling that Datastax provides the industry (K8sSandra / Stargate) to scale Cassandra on Kubernetes.
Having prior knowledge of Cassandra / Kubernetes means we know that under the hood Astra is built on infinitely scalable technologies. We trust that the foundations that Astra is built on will scale so we know Astra will scale.