An open-source end-to-end GenAI platform for air-gapped, on-premises or cloud VPC deployments. Users can Query and summarize documents or just chat with local private GPT LLMs using h2oGPT, an Apache V2 open-source project. And the commercially available Enterprise h2oGPTe provides information retrieval on internal data, privately hosts LLMs, and secures data.
N/A
MATLAB
Score 8.6 out of 10
N/A
MatLab is a predictive analytics and computing platform based on a proprietary programming language. MatLab is used across industry and academia.
Most suited if in little time you wanted to build and train a model. Then, H2O makes life very simple. It has support with R, Python and Java, so no programming dependency is required to use it. It's very simple to use. If you want to modify or tweak your ML algorithm then H2O is not suitable. You can't develop a model from scratch.
MATLAB really does best for solving computational problems in math and engineering. Especially when you have to use a lot of functions in your solving process, or if you have a nonlinear equation that must be iteratively solved. [MATLAB] can also perform things like integration and derivation on your equations that you put into it.
MATLAB is pretty easy to use. You can extend its capabilities using the programming interface. Very flexible capabilities when it comes to graphical presentation of your data (so many different kinds of options for your plotting needs). Anytime you are working with large data sets, or with matrices, MATLAB is likely to be very helpful.
The built-in search engine is not as performing as I wish it would be. However, the YouTube channel has a vast library of informative video that can help understanding the software. Also, many other software have a nice bridge into MATLAB, which makes it very versatile. Overall, the support for MATLAB is good.
Both are open source (though H2O only up to some level). Both comprise of deep learning, but H2O is not focused directly on deep learning, while Tensor Flow has a "laser" focus on deep learning. H2O is also more focused on scalability. H2O should be looked at not as a competitor but rather a complementary tool. The use case is usually not only about the algorithms, but also about the data model and data logistics and accessibility. H2O is more accessible due to its UI. Also, both can be accessed from Python. The community around TensorFlow seems larger than that of H2O.
How MATLAB compares to its competition or similar open access tools like R (programming language) or SciLab is that it's simply more powerful and capable. It embraces a wider spectrum of possibilities for far more fields than any other environment. R, for example, is intended primarily for the area of statistical computing. SciLab, on the other hand, is a similar open access tool that falls very short in its computing capabilities. It's much slower when running larger scripts and isn't documented or supported nearly as well as MATLAB.
Positive impact: saving in infrastructure expenses - compared to other bulky tools this costs a fraction
Positive impact: ability to get quick fixes from H2O when problems arise - compared to waiting for several months/years for new releases from other vendors
Positive impact: Access to H2O core team and able to get features that are needed for our business quickly added to the core H2O product
MATLAB helps us quickly sort through large sets of data because we keep the same script each time we run an analyzation, making it very efficient to run this whole process.
The software makes it super easy for us to create plots that we can then show to investors or clients to display our data.
We are also looking to create an app for our product, and we will not be able to do that on MATLAB, therefore creating a limiting issue and a new learning curve for a programming language.