Likelihood to Recommend Software work execution is on a large scale, it is good to use for new projects or organizational changes, data lineage mapping has always been dubious but this one has had good results. You can store and synchronize data from different departments, the storage process can be manual but it is best automated.
Read full review It is well organized. One can use it for the company's portfolio management. Various tasks can be done for managerial purposes. One can track the material from start to end product: for example, raw material, packing material & consumable material to formulated bulk and formulated drug product. This can help to manage spending as well as finding costing of the product.
Read full review Pros Apache Hive allows use to write expressive solutions to complex problems thanks to its SQL-like syntax. Relatively easy to set up and start using. Very little ramp-up to start using the actual product, documentation is very thorough, there is an active community, and the code base is constantly being improved. Read full review Real-time reporting and analytics on data: because of its in-memory architecture, it is perfect for businesses that need to make quick decisions based on current information. Managing workload with complex data: it can handle a vast range of data types, including relational, documental, geospatial, graph, vector, and time series data. Developing and deploying intelligent data applications: it provides various tools for such applications and can be used for machine learning and artificial intelligence to automate tasks, gain insights from data, and make predictions. Read full review Cons Some queries, particularly complex joins, are still quite slow and can take hours Previous jobs and queries are not stored sometimes Switching to Impala can sometimes be time-consuming (i.e. the system hangs, or is slow to respond). Sometimes, directories and tables don't load properly which causes confusion Read full review Requires higher processing power, otherwise it won't fly. How ever computing costs are lower. Incase you are migrating to cloud please do not select the highest config available in that series . Upgrading it later against a reserved instance can cost you dearly with a series change Lack of clarity on licensing is one major challenge Unless S/4 with additional features are enabled mere migration HANA DB is not a rewarding journey. Power is in S/4 Read full review Likelihood to Renew Since I do not know the second data warehouse solution that integrate with HDFS as well as Hive.
Read full review At this moment we are not focusing on SAP, however would love to in the future. This is primarily because of our limited ability to generate more revenue to fund for SAP partnerships and products. Our initial tryst with SAP Partneredge open ecosystem didn't go as planned and we have shelved that for now. Hope we can revive in the future
Read full review Usability Hive is a very good big data analysis and ad-hoc query platform, which supports scaling also. The BI processes can be easily integrated with Hadoop via the Hive. It can deal with a much larger data set that traditional RDBMS can not. It is a "must-have" component of the big data domain.
Read full review In addition to the points described in the previous parts of the review, I believe that as I gain more experience with the product over time, I will be able to better describe my experience with this tool. Meanwhile, I can confirm that the possibilities presented to my organization by the change to SAP HANA, at the moment, have been very important to evolve the analytical and strategic field towards a new path.
Read full review Support Rating Apache Hive is a FOSS project and its open source. We need not definitely comment on anything about the support of open source and its developer community. But, it has got tremendous developer support, awesome documentation. I would justify the fact that much support can be gathered from the community backup.
Read full review One specific example of how the support for SAP HANA Cloud impacted us is in our efforts to troubleshoot and resolve technical issues. Whenever we encountered an issue or had a question, the support team was quick to respond and provided us with clear and actionable guidance. This helped us avoid downtime and keep our analytics operations running smoothly.
Read full review Implementation Rating Professional GIS people are some of the most risk-averse there are, and it's difficult to get them to move to HANA in one step. Start with small projects building to 80% use of HANA spatial over time.
Read full review Alternatives Considered Besides Hive, I have used
Google BigQuery , which is costly but have very high computation speed. Amazon Redshift is the another product, I used in my recent organisation. Both Redshift and BigQuery are managed solution whereas Hive needs to be managed
Read full review I have deep knowledge of other disk based DBMSs. They are venerable technology, but the attempts to extend them to current architectures belie the fact they are built on 40 year old technology. There are some good columnar in-memory databases but they lack the completeness of capability present in the HANA platform.
Read full review Scalability Limitation of training deliverable by organization
Read full review Return on Investment Apache hive is secured and scalable solution that helps in increasing the overall organization productivity. Apache hive can handle and process large amount of data in a sufficient time manner. It simplifies writing SQL queries, hence helping the organization as most companies use SQL for all query jobs. Read full review ROI has always been high in terms of the functionality that it offers and the security features it comes with. Managing large volumes of data in real-time is not an easy task, but it does it pretty well with faster data processing. Read full review ScreenShots