Algolia offers AI-powered solutions to improve online search and discovery experiences, with tools for business teams and APIs for developers that help to improve user engagement and conversions across websites, apps, and e-commerce platforms.
$0
per month 10k search requests + 100k records
IBM Watson Discovery
Score 9.1 out of 10
N/A
IBM offers Watson Discovery, a natural language processing (NLP) application with options to measure sentiment, detect entities, semantic roles, and other concepts.
N/A
Pricing
Algolia
IBM Watson Discovery
Editions & Modules
Build
Free
per month Up to 10,000 search requests + 1 Million records
Grow Plus
Free / Pay as you go
per month 10K searches/month & 100K records included; $1.75 per extra 1K searches, $0.40 per extra 1K records
Grow
Free / Pay as you go
per month 10K search requests & 100K records included; $0.50 per extra 1K searches, $0.40 per extra 1K records
Elevate
custom
per year
Elevate
Custom
per year Custom search requests and records — volume-based discounts available
No answers on this topic
Offerings
Pricing Offerings
Algolia
IBM Watson Discovery
Free Trial
Yes
Yes
Free/Freemium Version
Yes
No
Premium Consulting/Integration Services
Yes
Yes
Entry-level Setup Fee
Optional
No setup fee
Additional Details
Pay as you go, scale instantly, or upgrade anytime for advanced features and capabilities.
I'd definitely recommend Algolia for a business operating in the ecommerce space and looking to integrate search quickly. Using the tool is easy to set up and works well. Out of the box you can have search, autocomplete, and recommendations that are all integrated. If you integrate directly, Algolia works well for also using their internal A/B test system. Areas where Algolia can be harder to use are in user-generated marketplaces. On a site where you control / own / produce all your inventory of results, you are solely optimizing for revenue/conversion. When you have a platform where there are different creators for each item, you need to balance revenue optimization with trying to support the business goals of the sellers on your marketplace platform. Algolia offers less tooling there which can be difficult and will require you build additional tooling/monitoring for that. Given that need, you likely cannot use all of Algolia's UI tools like A/B testing.
Overall, IBM Watson Discovery is an amazing technology that we use with our clients to address various business problems, but the biggest challenge has always been about ingesting, analyzing, enriching, and searching huge collections of documents and allowing our end users and SMEs to be able to search for what they need to reduce the time and efforts spent daily on a manual search through various collections of documents. We have successfully managed to reduce manual work by over 80%, and now our SMEs are being used for the skills they have to gather insights rather than do manual work.
Users get instant feedback as they type, even with complex filters like brand, model, price range, and financing eligibility. This speed significantly improves engagement and reduces bounce.
A user searching for “Camry 2020” or even “Camary 20” still sees relevant Toyota Camry listings from 2020. This reduces friction, especially on mobile where spelling errors are common.
Algolia handles multi-faceted filters efficiently. For example, a user can filter by location, transmission type, color, or inspection status without any lag.
We fine-tune the ranking of search results based on what matters to our business—like prioritizing cars with higher margins or better availability in key cities.
We can experiment with different ranking formulas or UI variations to improve KPIs like lead conversion or time-to-first-interaction.
Recent pricing model changes made Algolia considerably more expensive. I understand that companies change their models all the time, but my plan almost doubled in price overnight. They let me keep my legacy plan for as long as I wanted, but I had already outgrown it, so a small increase in demand caused big price spikes. It's still cheap for what it is though.
The documentation is generally good, but sometimes hard to navigate. I was trying to find examples of how to combine geo-queries with normal ones, and I couldn't find an example, but it wasn't actually hard to figure out.
Some of the advanced features can be hard to understand at first. This isn't really a con, as it just means Algolia is loaded with features, but I was a bit overwhelmed the first time I tried to customize an index.
I believe AI should be more flexible about providing data. However, it's understandable that you need to provide the details you need in a more specific and detailed way.
The interface could use more tweaking. Being new to the program, it was kind of hard to navigate.
Luckily, there was a customized feature of the dashboard that I could set up, and having something that you know where you are placed always feels familiar and comfortable.
Algolia is a great tool, we didn't have to build a custom search platform (using Elasticsearch for example) for a while. It has great flexibility and the set of libraries and SDKs make using it really easy. However, there are two major blockers for our future: - Their pricing it's still a bit hard to predict (when you are used to other kind of metrics for usage) so I really recommend to take a look at it first. - Integrating it within a CI/CD pipeline is difficult to replicate staging/development environments based on Production.
Algolia has a good interface and they have done some improvements. However, some non technical users have a challenging time in the use for the first days of learning. But once the main aspects are learned is a straight forward operation
IBM Watson Discovery has the best user capabilities and easily transform business decision-making portfolio. The automation system saves time used in data analysis as opposed to manual research that consumes a lot of time. The visualization across the dashboard enables my team to interpret complex data and use it to make reliable marketing decisions.
Performance is always a major concern when integrating services with our client's websites. Our tests and real-world experience show that Algolia is highly performant. We have more extremely satisfied with the speed of both the search service APIs and the backend administrative and analytic interface.
It’s non existent. No tech support and no customer service… my application was blocked and is currently inactive causing huge business disruption, and I’m still waiting days later for a response to an issue which could be resolved very very quickly if only they would respond. Very poor from a company of that size
Similar to all IBM Watson and Salesforce product solutions, the overall support would be a 10/10. Their provided FAQ's help with frequently experienced issues and if still unable to figure something out, their customer service representatives are always super responsive. With instant chat functions available, it is easy to ask a quick question rather than sitting on hold.
While AWS's offering is a typically cheaper solution, it requires a lot of work to gain any of the core features of Algolia. The cost of dev time and long-term maintenance would be more than the costs incurred with Algolia, which is why it made the most sense financially. On the engineering side, we could give our stakeholders access to Algolia to adjust the indices themselves, which would allow us to focus on other work.
Discovery differs from its competitors due to the better ease of implementation and the high level of natural language recognition, it is equal in integration resources such as API and workflow or process pipeline, but it loses in the price for a high volume of documents and/or research. If you own or plan to use other services from the IBM Watson family, there is no doubt that Watson discovery is your best option. Another important point is if you plan to use a cloud or on-premise service (local server or private cloud).
Overall is a scalable tool as the environment and the backend functions are the same and many things are done directly on the tool so without the need of further specific developments. However some things could be improved such as documentation for integration that could help in doing whitelabel solutions
Users who had abandoned our product (attributing slow search speeds as the reason) returned to us thanks to Algolia
We used Algolia as our product's backbone to relaunch it, making it the center of all search on our platform which paid off massively.
Considering we relaunched our product, with Aloglia functioning as its engine, we got a lot of press coverage for our highly improved search speeds.
One negative would be how important it is to read the fine print when it comes to the technical documentation. As pricing is done on the basis of records and indexes, it is not made apparent that there is a size limit for your records or how quickly these numbers can increase for any particular use case. Be very wary of these as they can quite easily exceed your allotted budget for the product.