Apache Airflow vs. AWS Batch

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Apache Airflow
Score 8.6 out of 10
N/A
Apache Airflow is an open source tool that can be used to programmatically author, schedule and monitor data pipelines using Python and SQL. Created at Airbnb as an open-source project in 2014, Airflow was brought into the Apache Software Foundation’s Incubator Program 2016 and announced as Top-Level Apache Project in 2019. It is used as a data orchestration solution, with over 140 integrations and community support.N/A
AWS Batch
Score 7.1 out of 10
N/A
With AWS Batch, users package the code for batch jobs, specify dependencies, and submit batch jobs using the AWS Management Console, CLIs, or SDKs. AWS Batch allows users to specify execution parameters and job dependencies, and facilitates integration with a broad range of popular batch computing workflow engines and languages (e.g., Pegasus WMS, Luigi, Nextflow, Metaflow, Apache Airflow, and AWS Step Functions).N/A
Pricing
Apache AirflowAWS Batch
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
Apache AirflowAWS Batch
Free Trial
NoNo
Free/Freemium Version
YesNo
Premium Consulting/Integration Services
NoNo
Entry-level Setup FeeNo setup feeNo setup fee
Additional Details
More Pricing Information
Community Pulse
Apache AirflowAWS Batch
Considered Both Products
Apache Airflow
Chose Apache Airflow
Airflow was best suited in my use case for designing the ETL pipelines in a scripted manner for workflows & the UI was very good & easy to use.
AWS Batch

No answer on this topic

Features
Apache AirflowAWS Batch
Workload Automation
Comparison of Workload Automation features of Product A and Product B
Apache Airflow
8.8
12 Ratings
5% above category average
AWS Batch
7.3
7 Ratings
14% below category average
Multi-platform scheduling9.312 Ratings6.06 Ratings
Central monitoring9.012 Ratings8.06 Ratings
Logging8.612 Ratings10.06 Ratings
Alerts and notifications9.312 Ratings5.06 Ratings
Analysis and visualization6.912 Ratings5.95 Ratings
Application integration9.312 Ratings8.76 Ratings
Best Alternatives
Apache AirflowAWS Batch
Small Businesses

No answers on this topic

No answers on this topic

Medium-sized Companies
ActiveBatch Workload Automation
ActiveBatch Workload Automation
Score 7.6 out of 10
Apache Airflow
Apache Airflow
Score 8.6 out of 10
Enterprises
Control-M
Control-M
Score 9.3 out of 10
Control-M
Control-M
Score 9.3 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
Apache AirflowAWS Batch
Likelihood to Recommend
8.8
(12 ratings)
5.0
(7 ratings)
Usability
8.3
(3 ratings)
8.0
(1 ratings)
User Testimonials
Apache AirflowAWS Batch
Likelihood to Recommend
Apache
Airflow is well-suited for data engineering pipelines, creating scheduled workflows, and working with various data sources. You can implement almost any kind of DAG for any use case using the different operators or enforce your operator using the Python operator with ease. The MLOps feature of Airflow can be enhanced to match MLFlow-like features, making Airflow the go-to solution for all workloads, from data science to data engineering.
Read full review
Amazon AWS
More appropriate if you have a tech group that can use more of the AWS Batch rather than one or 2 things. It works great for me, but there was a huge learning curve the first week of using it. Now, I love it - and I hope to dig deep into other parts not just S3.
Read full review
Pros
Apache
  • Apache Airflow is one of the best Orchestration platforms and a go-to scheduler for teams building a data platform or pipelines.
  • Apache Airflow supports multiple operators, such as the Databricks, Spark, and Python operators. All of these provide us with functionality to implement any business logic.
  • Apache Airflow is highly scalable, and we can run a large number of DAGs with ease. It provided HA and replication for workers. Maintaining airflow deployments is very easy, even for smaller teams, and we also get lots of metrics for observability.
Read full review
Amazon AWS
  • Easy to orchestrate and trigger jobs
  • No time limit issues like lambda
  • Multiple Jobs can be run in same single compute and job queue
  • JOb queue can queue up task for parralled or serialization
Read full review
Cons
Apache
  • UI/Dashboard can be updated to be customisable, and jobs summary in groups of errors/failures/success, instead of each job, so that a summary of errors can be used as a starting point for reviewing them.
  • Navigation - It's a bit dated. Could do with more modern web navigation UX. i.e. sidebars navigation instead of browser back/forward.
  • Again core functional reorg in terms of UX. Navigation can be improved for core functions as well, instead of discovery.
Read full review
Amazon AWS
  • Jobs monitoring dashboards are not matured
  • Documentation and support is something which can be improved
  • Sometime i faced the slow response or slow in performance i would say
Read full review
Usability
Apache
For its capability to connect with multicloud environments. Access Control management is something that we don't get in all the schedulers and orchestrators. But although it provides so many flexibility and options to due to python , some level of knowledge of python is needed to be able to build workflows.
Read full review
Amazon AWS
Key advantages include cost-effectiveness through dynamic resource provisioning and the use of spot instances. It auto-scales to meet workload demands, allowing easy job submission via the AWS Management Console or SDKs. It integrates seamlessly with other services like S3 and CloudWatch. It features automatic retries for failed jobs. It allows for a custom computing environment tailored to specific needs
Read full review
Alternatives Considered
Apache
Multiple DAGs can be orchestrated simultaneously at varying times, and runs can be reproduced or replicated with relative ease. Overall, utilizing Apache Airflow is easier to use than other solutions now on the market. It is simple to integrate in Apache Airflow, and the workflow can be monitored and scheduling can be done quickly using Apache Airflow. We advocate using this tool for automating the data pipeline or process.
Read full review
Amazon AWS
We wanted to start everything on a scale & with fewer resources to manage the underlying infrastructure.
Read full review
Return on Investment
Apache
  • Impact Depends on number of workflows. If there are lot of workflows then it has a better usecase as the implementation is justified as it needs resources , dedicated VMs, Database that has a cost
  • Donot use it if you have very less usecases
Read full review
Amazon AWS
  • Overall over business is able to save the cost
  • Saved our times to improve the existing process
  • Able to integrate with other applications as well, so that is plus point
Read full review
ScreenShots