Apache Airflow is an open source tool that can be used to programmatically author, schedule and monitor data pipelines using Python and SQL.
N/A
AWS Batch
Score 7.3 out of 10
N/A
With AWS Batch, users package the code for batch jobs, specify dependencies, and submit batch jobs using the AWS Management Console, CLIs, or SDKs. AWS Batch allows users to specify execution parameters and job dependencies, and facilitates integration with a broad range of popular batch computing workflow engines and languages (e.g., Pegasus WMS, Luigi, Nextflow, Metaflow, Apache Airflow, and AWS Step Functions).
Airflow is well-suited for data engineering pipelines, creating scheduled workflows, and working with various data sources. You can implement almost any kind of DAG for any use case using the different operators or enforce your operator using the Python operator with ease. The MLOps feature of Airflow can be enhanced to match MLFlow-like features, making Airflow the go-to solution for all workloads, from data science to data engineering.
More appropriate if you have a tech group that can use more of the AWS Batch rather than one or 2 things. It works great for me, but there was a huge learning curve the first week of using it. Now, I love it - and I hope to dig deep into other parts not just S3.
Apache Airflow is one of the best Orchestration platforms and a go-to scheduler for teams building a data platform or pipelines.
Apache Airflow supports multiple operators, such as the Databricks, Spark, and Python operators. All of these provide us with functionality to implement any business logic.
Apache Airflow is highly scalable, and we can run a large number of DAGs with ease. It provided HA and replication for workers. Maintaining airflow deployments is very easy, even for smaller teams, and we also get lots of metrics for observability.
UI/Dashboard can be updated to be customisable, and jobs summary in groups of errors/failures/success, instead of each job, so that a summary of errors can be used as a starting point for reviewing them.
Navigation - It's a bit dated. Could do with more modern web navigation UX. i.e. sidebars navigation instead of browser back/forward.
Again core functional reorg in terms of UX. Navigation can be improved for core functions as well, instead of discovery.
For its capability to connect with multicloud environments. Access Control management is something that we don't get in all the schedulers and orchestrators. But although it provides so many flexibility and options to due to python , some level of knowledge of python is needed to be able to build workflows.
Key advantages include cost-effectiveness through dynamic resource provisioning and the use of spot instances. It auto-scales to meet workload demands, allowing easy job submission via the AWS Management Console or SDKs. It integrates seamlessly with other services like S3 and CloudWatch. It features automatic retries for failed jobs. It allows for a custom computing environment tailored to specific needs
Multiple DAGs can be orchestrated simultaneously at varying times, and runs can be reproduced or replicated with relative ease. Overall, utilizing Apache Airflow is easier to use than other solutions now on the market. It is simple to integrate in Apache Airflow, and the workflow can be monitored and scheduling can be done quickly using Apache Airflow. We advocate using this tool for automating the data pipeline or process.
Impact Depends on number of workflows. If there are lot of workflows then it has a better usecase as the implementation is justified as it needs resources , dedicated VMs, Database that has a cost